Y.P. Oktiovan, L. Davis, R. Wilson, A. Dell’Endice, A. Mehrotra, B. Pulatsu, D. Malomo
{"title":"Simplified Micro-Modeling of a Masonry Cross-Vault for Seismic Assessment Using the Distinct Element Method","authors":"Y.P. Oktiovan, L. Davis, R. Wilson, A. Dell’Endice, A. Mehrotra, B. Pulatsu, D. Malomo","doi":"10.1080/15583058.2023.2277328","DOIUrl":null,"url":null,"abstract":"The assessment of the seismic performance of unreinforced masonry cross-vaults is still a challenge in numerical analysis, due to complex curved geometries and bond patterns, and uncertainties related to the selection of adequate modeling strategies, including but not limited to that of material properties, damping scheme, and unit/joint idealization. This paper presents the results of a collaborative effort to validate, against the shake table test of both unstrengthened and strengthened masonry cross-vault specimens as part of the SERA Project Blind Prediction and Post-diction Competition, various discontinuum-based numerical approaches. First, the geometry of the cross-vault is created using a Python-based computational framework to accurately represent the brick arrangement and the shape of the vault. Then, the geometry is converted into an assemblage of deformable blocks and analyzed using the Distinct Element Method (DEM). An elasto-softening contact model based on fracture energy is implemented in the masonry joints to simulate crushing, tensile, and shear failures. The performance of the proposed strategy, conceived for the unstrengthened configuration of the tested vault specimen and then adapted to include the presence of cementitious repairs, shows satisfactory agreement with both qualitative and quantitative experimental responses, also revealing critical insights and lessons learned through the blind/post-prediction exercise.","PeriodicalId":13783,"journal":{"name":"International Journal of Architectural Heritage","volume":" 8","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15583058.2023.2277328","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The assessment of the seismic performance of unreinforced masonry cross-vaults is still a challenge in numerical analysis, due to complex curved geometries and bond patterns, and uncertainties related to the selection of adequate modeling strategies, including but not limited to that of material properties, damping scheme, and unit/joint idealization. This paper presents the results of a collaborative effort to validate, against the shake table test of both unstrengthened and strengthened masonry cross-vault specimens as part of the SERA Project Blind Prediction and Post-diction Competition, various discontinuum-based numerical approaches. First, the geometry of the cross-vault is created using a Python-based computational framework to accurately represent the brick arrangement and the shape of the vault. Then, the geometry is converted into an assemblage of deformable blocks and analyzed using the Distinct Element Method (DEM). An elasto-softening contact model based on fracture energy is implemented in the masonry joints to simulate crushing, tensile, and shear failures. The performance of the proposed strategy, conceived for the unstrengthened configuration of the tested vault specimen and then adapted to include the presence of cementitious repairs, shows satisfactory agreement with both qualitative and quantitative experimental responses, also revealing critical insights and lessons learned through the blind/post-prediction exercise.
期刊介绍:
International Journal of Architectural Heritage provides a multidisciplinary scientific overview of existing resources and modern technologies useful for the study and repair of historical buildings and other structures. The journal will include information on history, methodology, materials, survey, inspection, non-destructive testing, analysis, diagnosis, remedial measures, and strengthening techniques.
Preservation of the architectural heritage is considered a fundamental issue in the life of modern societies. In addition to their historical interest, cultural heritage buildings are valuable because they contribute significantly to the economy by providing key attractions in a context where tourism and leisure are major industries in the 3rd millennium. The need of preserving historical constructions is thus not only a cultural requirement, but also an economical and developmental demand.
The study of historical buildings and other structures must be undertaken from an approach based on the use of modern technologies and science. The final aim must be to select and adequately manage the possible technical means needed to attain the required understanding of the morphology and the structural behavior of the construction and to characterize its repair needs. Modern requirements for an intervention include reversibility, unobtrusiveness, minimum repair, and respect of the original construction, as well as the obvious functional and structural requirements. Restoration operations complying with these principles require a scientific, multidisciplinary approach that comprehends historical understanding, modern non-destructive inspection techniques, and advanced experimental and computer methods of analysis.