Maryam Jouyandeh, Farzad Seidi, Sajjad Habibzadeh, Mohamed S Hasanin, Paulina Wiśniewska, Navid Rabiee, Henri Vahabi, Seeram Ramakrishna, Mohammad Reza Saeb
{"title":"An overview of green and sustainable polymeric coatings","authors":"Maryam Jouyandeh, Farzad Seidi, Sajjad Habibzadeh, Mohamed S Hasanin, Paulina Wiśniewska, Navid Rabiee, Henri Vahabi, Seeram Ramakrishna, Mohammad Reza Saeb","doi":"10.1680/jsuin.23.00043","DOIUrl":null,"url":null,"abstract":"Synthetic polymers have to be replaced with green counterparts for sustainability needs. Green and sustainable polymeric coatings have progressively undergone development, as functional and protective materials for myriad applications ranging from packaging to biomedicine. Despite such innovative and environmental privileges, they are not adequately competitive in terms of properties to displace synthetic polymeric coatings. Functionalization of the surface and/or the bulk of the green polymeric coatings by functional groups, natural polymers, nanoparticles, crosslinking agents, anti-fouling precursors, and synthetic polymers can strengthen their properties and enlarge their performance window. However, definitions and terms related to green and sustainable coatings have not been systematically addressed. Biomass-, plant oil-, carbohydrate-, protein- and microbial-based polymeric coatings are the main classes of sustainable polymeric coatings briefly overviewed herein. The technological bottlenecks towards commercialization of sustainable coatings and films are also highlighted.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jsuin.23.00043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic polymers have to be replaced with green counterparts for sustainability needs. Green and sustainable polymeric coatings have progressively undergone development, as functional and protective materials for myriad applications ranging from packaging to biomedicine. Despite such innovative and environmental privileges, they are not adequately competitive in terms of properties to displace synthetic polymeric coatings. Functionalization of the surface and/or the bulk of the green polymeric coatings by functional groups, natural polymers, nanoparticles, crosslinking agents, anti-fouling precursors, and synthetic polymers can strengthen their properties and enlarge their performance window. However, definitions and terms related to green and sustainable coatings have not been systematically addressed. Biomass-, plant oil-, carbohydrate-, protein- and microbial-based polymeric coatings are the main classes of sustainable polymeric coatings briefly overviewed herein. The technological bottlenecks towards commercialization of sustainable coatings and films are also highlighted.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.