Coupling effect between highly nonlinear solitary waves and functionally graded porous plates reinforced with graphene platelets

IF 3 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Xingyu Xiao, Yan Wang
{"title":"Coupling effect between highly nonlinear solitary waves and functionally graded porous plates reinforced with graphene platelets","authors":"Xingyu Xiao, Yan Wang","doi":"10.1080/10589759.2023.2274009","DOIUrl":null,"url":null,"abstract":"ABSTRACTSolitary waves possess extensive potential for application in non-destructive testing due to their role as efficient information carriers. This study investigates the coupling effect between highly nonlinear solitary waves and functionally graded porous plates reinforced with graphene platelets (FGP-GPLs). An improved Halpin–Tsai micromechanics model and an improved two-variable precision plate theory are employed to derive a differential equation system for the coupling of particle chains and FGP-GPLs. The system is solved using the fourth-order Runge–Kutta method to obtain velocity and displacement solutions of the particles. The time and amplitude of the rebound waves are analysed, and it is found that the pore distribution, graphene distribution, porosity coefficient, thickness ratio, and graphene weight fraction impact the solitary wave. The results of this study provide a theoretical basis for the non-destructive detection of FGP-GPLs by solitary waves, which enables rapid inspection and controllability studies of structures. Moreover, this technology expands the application fields of nonlinear solitary waves based on one-dimensional spherical particle chains.KEYWORDS: Highly nonlinear solitary wavefunctionally graded porous plates reinforced with graphene plateletsHertz’s lawnon-destructive testingone-dimensional spherical particle chains Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","PeriodicalId":49746,"journal":{"name":"Nondestructive Testing and Evaluation","volume":" 21","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nondestructive Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10589759.2023.2274009","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTSolitary waves possess extensive potential for application in non-destructive testing due to their role as efficient information carriers. This study investigates the coupling effect between highly nonlinear solitary waves and functionally graded porous plates reinforced with graphene platelets (FGP-GPLs). An improved Halpin–Tsai micromechanics model and an improved two-variable precision plate theory are employed to derive a differential equation system for the coupling of particle chains and FGP-GPLs. The system is solved using the fourth-order Runge–Kutta method to obtain velocity and displacement solutions of the particles. The time and amplitude of the rebound waves are analysed, and it is found that the pore distribution, graphene distribution, porosity coefficient, thickness ratio, and graphene weight fraction impact the solitary wave. The results of this study provide a theoretical basis for the non-destructive detection of FGP-GPLs by solitary waves, which enables rapid inspection and controllability studies of structures. Moreover, this technology expands the application fields of nonlinear solitary waves based on one-dimensional spherical particle chains.KEYWORDS: Highly nonlinear solitary wavefunctionally graded porous plates reinforced with graphene plateletsHertz’s lawnon-destructive testingone-dimensional spherical particle chains Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
高度非线性孤立波与石墨烯增强功能梯度多孔板的耦合效应
孤立波作为一种有效的信息载体,在无损检测中具有广泛的应用潜力。本研究探讨了高度非线性孤立波与石墨烯片增强的功能梯度多孔板(FGP-GPLs)之间的耦合效应。采用改进的Halpin-Tsai细观力学模型和改进的双变量精密板理论,推导了颗粒链与fgp - gpl耦合的微分方程组。采用四阶龙格-库塔法求解系统,得到粒子的速度解和位移解。分析了回弹波的时间和振幅,发现孔隙分布、石墨烯分布、孔隙系数、厚度比和石墨烯重量分数对孤波有影响。本研究结果为孤立波无损检测FGP-GPLs提供了理论基础,实现了结构的快速检测和可控性研究。此外,该技术拓展了基于一维球形粒子链的非线性孤立波的应用领域。关键词:石墨烯平板增强的高度非线性孤波功能梯度多孔板;shertz定律;无损检测;一维球形颗粒链披露声明:作者声明,他们没有已知的竞争经济利益或个人关系,可能会影响本文所报道的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nondestructive Testing and Evaluation
Nondestructive Testing and Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.30
自引率
11.50%
发文量
57
审稿时长
4 months
期刊介绍: Nondestructive Testing and Evaluation publishes the results of research and development in the underlying theory, novel techniques and applications of nondestructive testing and evaluation in the form of letters, original papers and review articles. Articles concerning both the investigation of physical processes and the development of mechanical processes and techniques are welcomed. Studies of conventional techniques, including radiography, ultrasound, eddy currents, magnetic properties and magnetic particle inspection, thermal imaging and dye penetrant, will be considered in addition to more advanced approaches using, for example, lasers, squid magnetometers, interferometers, synchrotron and neutron beams and Compton scattering. Work on the development of conventional and novel transducers is particularly welcomed. In addition, articles are invited on general aspects of nondestructive testing and evaluation in education, training, validation and links with engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信