{"title":"Half-metallic magnetism in 2D MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te) intercalated with 1D MX chains","authors":"W. J. Ding, Xin Li, Zhenjie Zhao, Wenhui Xie","doi":"10.1063/5.0169249","DOIUrl":null,"url":null,"abstract":"Intercalation has attracted considerable attention due to its extensive ability to modify the electronic, optical, and magnetic properties of two-dimensional (2D) layered nanomaterials. Typically, dispersed atoms or molecules are inserted into the van der Waals gap of the 2D materials. Recently, Guo et al. experimentally reported the novel VS2–VS superlattice, where the intercalation takes the form of atomic chain arrays. In this study, we employed the first-principles calculations based on density functional theory to investigate a series of analogous 2D MX2–MX–MX2 nanomaterials, which, consisting of 2D transition metal dichalcogenide bilayers, intercalated with a one-dimensional transition metal chalcogenide MX chain array, forming a hotdog-like structure. Some of the 2D MX2–MX–MX2 are thermally and dynamically stable, suggesting their potential for experimental fabrication similar to VS2–VS–VS2. MnS2–MnS–MnS2 and MnSe2–MnSe–MnSe2 have been found to exhibit ferromagnetic half-metallic properties. In addition, VSe2–VSe–VSe2, CrS2–CrS–CrS2, and CrSe2–CrSe–CrSe2 have been found to be thermally and dynamically stable. Under appropriate external stress, doping, or bias, they could become ferromagnetic half-metals, revealing their potential for spintronic applications.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":" 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0169249","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Intercalation has attracted considerable attention due to its extensive ability to modify the electronic, optical, and magnetic properties of two-dimensional (2D) layered nanomaterials. Typically, dispersed atoms or molecules are inserted into the van der Waals gap of the 2D materials. Recently, Guo et al. experimentally reported the novel VS2–VS superlattice, where the intercalation takes the form of atomic chain arrays. In this study, we employed the first-principles calculations based on density functional theory to investigate a series of analogous 2D MX2–MX–MX2 nanomaterials, which, consisting of 2D transition metal dichalcogenide bilayers, intercalated with a one-dimensional transition metal chalcogenide MX chain array, forming a hotdog-like structure. Some of the 2D MX2–MX–MX2 are thermally and dynamically stable, suggesting their potential for experimental fabrication similar to VS2–VS–VS2. MnS2–MnS–MnS2 and MnSe2–MnSe–MnSe2 have been found to exhibit ferromagnetic half-metallic properties. In addition, VSe2–VSe–VSe2, CrS2–CrS–CrS2, and CrSe2–CrSe–CrSe2 have been found to be thermally and dynamically stable. Under appropriate external stress, doping, or bias, they could become ferromagnetic half-metals, revealing their potential for spintronic applications.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces