Othman Al‐Mashaqbeh, Layal Alsalhi, Lana Salaymeh, Tao Lyu
{"title":"Assessment of novel hybrid treatment wetlands as nature‐based solutions for pharmaceutical industry wastewater treatment","authors":"Othman Al‐Mashaqbeh, Layal Alsalhi, Lana Salaymeh, Tao Lyu","doi":"10.1111/wej.12907","DOIUrl":null,"url":null,"abstract":"Abstract This study investigated the use of nature‐based solutions for treating real pharmaceutical industry wastewater in Jordan. A pilot‐scale hybrid treatment wetland (TW) equipped with local zeolite was employed, comprising a tidal flow TW and a horizontal subsurface flow TW. This system was efficient in treating pharmaceutical wastewater with removal efficiencies of 61.4%, 52.6%, 60.1%, and 61.9% for chemical oxygen demand, total phosphorus, total nitrogen, and NH 4 + ‐N, respectively. The final effluent met Jordanian standards for the reuse of treated wastewater in irrigation (Class B). Five pharmaceuticals, namely, enrofloxacin, ciprofloxacin, ofloxacin, lincomycin, and trimethoprim, demonstrated nearly completed removal (93.6–99.9%). Moderated removal performances (59.2–68.2%) were observed for two compounds, flumequine and sulfaquinoxaline. However, three pharmaceuticals, namely, carbamazepine, diclofenac, and sulfadimidine, showed limited removal performances (1.1–20.5%). This study supported the feasibility of using nature‐based solutions for treating pharmaceutical wastewater and highlighted that future studies are required to optimize this strategy for removing a broader range of pharmaceuticals.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":" 16","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/wej.12907","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This study investigated the use of nature‐based solutions for treating real pharmaceutical industry wastewater in Jordan. A pilot‐scale hybrid treatment wetland (TW) equipped with local zeolite was employed, comprising a tidal flow TW and a horizontal subsurface flow TW. This system was efficient in treating pharmaceutical wastewater with removal efficiencies of 61.4%, 52.6%, 60.1%, and 61.9% for chemical oxygen demand, total phosphorus, total nitrogen, and NH 4 + ‐N, respectively. The final effluent met Jordanian standards for the reuse of treated wastewater in irrigation (Class B). Five pharmaceuticals, namely, enrofloxacin, ciprofloxacin, ofloxacin, lincomycin, and trimethoprim, demonstrated nearly completed removal (93.6–99.9%). Moderated removal performances (59.2–68.2%) were observed for two compounds, flumequine and sulfaquinoxaline. However, three pharmaceuticals, namely, carbamazepine, diclofenac, and sulfadimidine, showed limited removal performances (1.1–20.5%). This study supported the feasibility of using nature‐based solutions for treating pharmaceutical wastewater and highlighted that future studies are required to optimize this strategy for removing a broader range of pharmaceuticals.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure