{"title":"VxH: A systematic determination of efficient hierarchical voxel structures","authors":"Mouad Rifai, Lennart Johnsson","doi":"10.1145/3632404","DOIUrl":null,"url":null,"abstract":"3D maps with many millions to billions of points are now used in an increasing number of applications, with processing rates in the hundreds of thousands to millions of points per second. In mobile applications, power and energy consumption for managing such data and extracting useful information thereof are critical concerns. We have developed structures and methodologies with the purpose of minimizing memory usage and associated energy consumption for indexing and serialization of voxelized point-clouds. The primary source of points in our case is airborne laser scanning, but our methodology is not restricted to only such setting. Our emulated results show a memory usage reduction factor of roughly up to 200 × that of Octree/Octomap, and a file size reduction factor of up to 1.65 × compared the predominating compression scheme for airborne Lidar data, LASzip. In addition, our structures enable significantly more efficient processing since they are included in a hierarchical structure that captures geometric aspects.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3632404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1
Abstract
3D maps with many millions to billions of points are now used in an increasing number of applications, with processing rates in the hundreds of thousands to millions of points per second. In mobile applications, power and energy consumption for managing such data and extracting useful information thereof are critical concerns. We have developed structures and methodologies with the purpose of minimizing memory usage and associated energy consumption for indexing and serialization of voxelized point-clouds. The primary source of points in our case is airborne laser scanning, but our methodology is not restricted to only such setting. Our emulated results show a memory usage reduction factor of roughly up to 200 × that of Octree/Octomap, and a file size reduction factor of up to 1.65 × compared the predominating compression scheme for airborne Lidar data, LASzip. In addition, our structures enable significantly more efficient processing since they are included in a hierarchical structure that captures geometric aspects.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.