{"title":"Fixed-Time Distributed Time-Varying Optimization for Nonlinear Fractional-Order Multiagent Systems with Unbalanced Digraphs","authors":"Kun Wang, Ping Gong, Zhiyao Ma","doi":"10.3390/fractalfract7110813","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of fixed-time distributed time-varying optimization of a nonlinear fractional-order multiagent system (FOMAS) over a weight-unbalanced directed graph (digraph), where the heterogeneous unknown nonlinear functions and disturbances are involved. The aim is to cooperatively minimize a convex time-varying global cost function produced by a sum of time-varying local cost functions within a fixed time, where each time-varying local cost function does not have to be convex. Using a three-step design procedure, a fully distributed fixed-time optimization algorithm is constructed to achieve the objective. The first step is to design a fully distributed fixed-time estimator to estimate some centralized optimization terms within a fixed time T0. The second step is to develop a novel discontinuous fixed-time sliding mode algorithm with nominal controller to derive all the agents to the sliding-mode surface within a fixed time T1, and meanwhile the dynamics of each agent is described by a single-integrator MAS with nominal controller. In the third step, a novel estimator-based fully distributed fixed-time nominal controller for the single-integrator MAS is presented to guarantee all agents reach consensus within a fixed time T2, and afterwards minimize the convex time-varying global cost function within a fixed time T3. The upper bound of each fixed time Tm(m=0,1,2,3) is given explicitly, which is independent of the initial states. Finally, a numerical example is provided to validate the results.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" 3","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110813","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the problem of fixed-time distributed time-varying optimization of a nonlinear fractional-order multiagent system (FOMAS) over a weight-unbalanced directed graph (digraph), where the heterogeneous unknown nonlinear functions and disturbances are involved. The aim is to cooperatively minimize a convex time-varying global cost function produced by a sum of time-varying local cost functions within a fixed time, where each time-varying local cost function does not have to be convex. Using a three-step design procedure, a fully distributed fixed-time optimization algorithm is constructed to achieve the objective. The first step is to design a fully distributed fixed-time estimator to estimate some centralized optimization terms within a fixed time T0. The second step is to develop a novel discontinuous fixed-time sliding mode algorithm with nominal controller to derive all the agents to the sliding-mode surface within a fixed time T1, and meanwhile the dynamics of each agent is described by a single-integrator MAS with nominal controller. In the third step, a novel estimator-based fully distributed fixed-time nominal controller for the single-integrator MAS is presented to guarantee all agents reach consensus within a fixed time T2, and afterwards minimize the convex time-varying global cost function within a fixed time T3. The upper bound of each fixed time Tm(m=0,1,2,3) is given explicitly, which is independent of the initial states. Finally, a numerical example is provided to validate the results.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.