COUPLED EFFECT OF VARIABLE WETTABILITY AND BODY FORCE ON FLUID FLOW THROUGH NANOCHANNELS: A MULTISCALE APPROACH

IF 1.3 Q3 THERMODYNAMICS
Abhirup Chaudhuri, Vinay Arya, Chirodeep Bakli
{"title":"COUPLED EFFECT OF VARIABLE WETTABILITY AND BODY FORCE ON FLUID FLOW THROUGH NANOCHANNELS: A MULTISCALE APPROACH","authors":"Abhirup Chaudhuri, Vinay Arya, Chirodeep Bakli","doi":"10.1615/computthermalscien.2022043262","DOIUrl":null,"url":null,"abstract":"Fluid flow through sub-micron domains has been an area of active research in recent years with immense scientific and technological interests. Such flows can show deviation in behavior from the theories of classical hydrodynamics, thus opening up a new paradigm to exploit these unique effects in applications related to transport and detection. By performing extensive molecular-dynamics (MD) simulations of fluid flow through a parallel plate nanochannel of non-uniform wetting characteristics, we bring out the coupled effect of surface wettability and applied body force on interfacial slip. Our results reveal distinctive slip-stick alteration which can be useful in designing channels with engineered effective slip. Moreover, in this study, we revisit a hybrid molecular-continuum multiscale model which can significantly reduce the computational cost of full-scale MD simulations and further provide a framework to discern the flow behavior for a wide spectrum of length scales. The results obtained from this study may provide useful insights, thus carrying immense implications towards designing of multifaceted nanoscale devices and futuristic smart surfaces.","PeriodicalId":45052,"journal":{"name":"Computational Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/computthermalscien.2022043262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Fluid flow through sub-micron domains has been an area of active research in recent years with immense scientific and technological interests. Such flows can show deviation in behavior from the theories of classical hydrodynamics, thus opening up a new paradigm to exploit these unique effects in applications related to transport and detection. By performing extensive molecular-dynamics (MD) simulations of fluid flow through a parallel plate nanochannel of non-uniform wetting characteristics, we bring out the coupled effect of surface wettability and applied body force on interfacial slip. Our results reveal distinctive slip-stick alteration which can be useful in designing channels with engineered effective slip. Moreover, in this study, we revisit a hybrid molecular-continuum multiscale model which can significantly reduce the computational cost of full-scale MD simulations and further provide a framework to discern the flow behavior for a wide spectrum of length scales. The results obtained from this study may provide useful insights, thus carrying immense implications towards designing of multifaceted nanoscale devices and futuristic smart surfaces.
可变润湿性和身体力对纳米通道流体流动的耦合效应:多尺度方法
近年来,流体在亚微米域中的流动是一个活跃的研究领域,具有巨大的科学和技术兴趣。这样的流动可以表现出与经典流体力学理论的行为偏差,从而为在与传输和检测相关的应用中利用这些独特的效应开辟了一个新的范例。通过对具有非均匀润湿特性的平行板纳米通道的流体流动进行广泛的分子动力学模拟,得出了表面润湿性和外加力对界面滑移的耦合效应。我们的研究结果揭示了独特的滑杆变化,这对于设计具有工程有效滑移的通道是有用的。此外,在本研究中,我们重新审视了一种混合分子-连续体多尺度模型,该模型可以显著降低全尺寸MD模拟的计算成本,并进一步提供一个框架来识别宽长度尺度范围内的流动行为。从这项研究中获得的结果可能提供有用的见解,从而对设计多面纳米级设备和未来智能表面具有巨大的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
6.70%
发文量
36
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信