A Large Deviation Principle for the Stochastic Heat Equation with General Rough Noise

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Ruinan Li, Ran Wang, Beibei Zhang
{"title":"A Large Deviation Principle for the Stochastic Heat Equation with General Rough Noise","authors":"Ruinan Li, Ran Wang, Beibei Zhang","doi":"10.1007/s10959-022-01228-3","DOIUrl":null,"url":null,"abstract":"We study the Freidlin–Wentzell large deviation principle for the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise: $$\\begin{aligned} \\frac{\\partial u^{{\\varepsilon }}(t,x)}{\\partial t}=\\frac{\\partial ^2 u^{{\\varepsilon }}(t,x)}{\\partial x^2}+\\sqrt{{\\varepsilon }}\\sigma (t, x, u^{{\\varepsilon }}(t,x))\\dot{W}(t,x),\\quad t> 0,\\, x\\in \\mathbb {R}, \\end{aligned}$$ where $$\\dot{W}$$ is white in time and fractional in space with Hurst parameter $$H\\in \\left( \\frac{1}{4},\\frac{1}{2}\\right) $$ . Recently, Hu and Wang (Ann Inst Henri Poincaré Probab Stat 58(1):379–423, 2022) have studied the well-posedness of this equation without the technical condition of $$\\sigma (0)=0$$ which was previously assumed in Hu et al. (Ann Probab 45(6):4561–4616, 2017). We adopt a new sufficient condition proposed by Matoussi et al. (Appl Math Optim 83(2):849–879, 2021) for the weak convergence criterion of the large deviation principle.","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"8 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-022-01228-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Freidlin–Wentzell large deviation principle for the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise: $$\begin{aligned} \frac{\partial u^{{\varepsilon }}(t,x)}{\partial t}=\frac{\partial ^2 u^{{\varepsilon }}(t,x)}{\partial x^2}+\sqrt{{\varepsilon }}\sigma (t, x, u^{{\varepsilon }}(t,x))\dot{W}(t,x),\quad t> 0,\, x\in \mathbb {R}, \end{aligned}$$ where $$\dot{W}$$ is white in time and fractional in space with Hurst parameter $$H\in \left( \frac{1}{4},\frac{1}{2}\right) $$ . Recently, Hu and Wang (Ann Inst Henri Poincaré Probab Stat 58(1):379–423, 2022) have studied the well-posedness of this equation without the technical condition of $$\sigma (0)=0$$ which was previously assumed in Hu et al. (Ann Probab 45(6):4561–4616, 2017). We adopt a new sufficient condition proposed by Matoussi et al. (Appl Math Optim 83(2):849–879, 2021) for the weak convergence criterion of the large deviation principle.
一般粗糙噪声下随机热方程的大偏差原理
我们研究了由高斯噪声驱动的非线性一维随机热方程的Freidlin-Wentzell大偏差原理:$$\begin{aligned} \frac{\partial u^{{\varepsilon }}(t,x)}{\partial t}=\frac{\partial ^2 u^{{\varepsilon }}(t,x)}{\partial x^2}+\sqrt{{\varepsilon }}\sigma (t, x, u^{{\varepsilon }}(t,x))\dot{W}(t,x),\quad t> 0,\, x\in \mathbb {R}, \end{aligned}$$,其中$$\dot{W}$$在时间上是白色的,在空间上是分数的,Hurst参数$$H\in \left( \frac{1}{4},\frac{1}{2}\right) $$。最近,Hu和Wang (Ann Inst Henri poincar Probab Stat 58(1):379 - 423,2022)研究了该方程的适定性,而不需要Hu等人(Ann Probab 45(6): 4561-4616, 2017)先前假设的$$\sigma (0)=0$$技术条件。我们采用Matoussi et al.(应用数学优化83(2):849-879,2021)提出的一个新的充分条件作为大偏差原理的弱收敛准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信