Subproduct systems with quantum group symmetry

IF 0.7 2区 数学 Q2 MATHEMATICS
Erik Habbestad, Sergey Neshveyev
{"title":"Subproduct systems with quantum group symmetry","authors":"Erik Habbestad, Sergey Neshveyev","doi":"10.4171/jncg/523","DOIUrl":null,"url":null,"abstract":"We introduce a class of subproduct systems of finite dimensional Hilbert spaces whose fibers are defined by the Jones–Wenzl projections in Temperley–Lieb algebras. The quantum symmetries of a subclass of these systems are the free orthogonal quantum groups. For this subclass, we show that the corresponding Toeplitz algebras are nuclear C$^\\*$-algebras that are $KK$-equivalent to $\\mathbb C$ and obtain a complete list of generators and relations for them. We also show that their gauge-invariant subalgebras coincide with the algebras of functions on the end compactifications of the duals of the free orthogonal quantum groups. Along the way we prove a few general results on equivariant subproduct systems, in particular, on the behavior of the Toeplitz and Cuntz–Pimsner algebras under monoidal equivalence of quantum symmetry groups.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"BME-30 9","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/523","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a class of subproduct systems of finite dimensional Hilbert spaces whose fibers are defined by the Jones–Wenzl projections in Temperley–Lieb algebras. The quantum symmetries of a subclass of these systems are the free orthogonal quantum groups. For this subclass, we show that the corresponding Toeplitz algebras are nuclear C$^\*$-algebras that are $KK$-equivalent to $\mathbb C$ and obtain a complete list of generators and relations for them. We also show that their gauge-invariant subalgebras coincide with the algebras of functions on the end compactifications of the duals of the free orthogonal quantum groups. Along the way we prove a few general results on equivariant subproduct systems, in particular, on the behavior of the Toeplitz and Cuntz–Pimsner algebras under monoidal equivalence of quantum symmetry groups.
具有量子群对称的子积系统
引入了有限维Hilbert空间的一类子积系统,其纤维由Temperley-Lieb代数中的Jones-Wenzl投影定义。这些系统的一个子类的量子对称性是自由正交量子群。对于这个子类,我们证明了对应的Toeplitz代数是核C$^\*$-代数,它$KK$-等价于$\mathbb C$,并得到了它们的生成器和关系的完整列表。我们还证明了它们的规范不变子代数与自由正交量子群对偶的端紧化上的函数代数重合。在此过程中,我们证明了一些关于等变子积系统的一般结果,特别是关于Toeplitz代数和Cuntz-Pimsner代数在量子对称群一元等价下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信