Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients

IF 0.8 4区 数学 Q2 MATHEMATICS
Álvaro Gutiérrez, Mercedes H. Rosas
{"title":"Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients","authors":"Álvaro Gutiérrez, Mercedes H. Rosas","doi":"10.5802/crmath.468","DOIUrl":null,"url":null,"abstract":"We give necessary conditions for the positivity of Littlewood–Richardson coefficients and SXP coefficients. We deduce necessary conditions for the positivity of the plethystic coefficients. Explicitly, our main result states that if S λ (V) appears as a summand in the decomposition into irreducibles of S μ (S ν (V)), then ν’s diagram is contained in λ’s diagram.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"12 3","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.468","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We give necessary conditions for the positivity of Littlewood–Richardson coefficients and SXP coefficients. We deduce necessary conditions for the positivity of the plethystic coefficients. Explicitly, our main result states that if S λ (V) appears as a summand in the decomposition into irreducibles of S μ (S ν (V)), then ν’s diagram is contained in λ’s diagram.
Littlewood-Richardson系数和plethystic系数正的必要条件
给出了Littlewood-Richardson系数和SXP系数正的必要条件。我们推导出多倍体系数为正的必要条件。明确地,我们的主要结果表明,如果S λ (V)在S μ (S ν (V))的不可约分解中以求和形式出现,则ν的图包含在λ的图中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信