Chelsea Krantsevich, P. Richard Hahn, Yi Zheng, Charles Katz
{"title":"Bayesian decision theory for tree-based adaptive screening tests with an application to youth delinquency","authors":"Chelsea Krantsevich, P. Richard Hahn, Yi Zheng, Charles Katz","doi":"10.1214/22-aoas1657","DOIUrl":null,"url":null,"abstract":"Crime prevention strategies based on early intervention depend on accurate risk assessment instruments for identifying high-risk youth. It is important in this context that the instruments be convenient to administer, which means, in particular, that they should also be reasonably brief; adaptive screening tests are useful for this purpose. Adaptive tests constructed using classification and regression trees are becoming a popular alternative to traditional item response theory (IRT) approaches for adaptive testing. However, tree-based adaptive tests lack a principled criterion for terminating the test. This paper develops a Bayesian decision theory framework for measuring the trade-off between brevity and accuracy when considering tree-based adaptive screening tests of different lengths. We also present a novel method for designing tree-based adaptive tests, motivated by this framework. The framework and associated adaptive test method are demonstrated through an application to youth delinquency risk assessment in Honduras; it is shown that an adaptive test requiring a subject to answer fewer than 10 questions can identify high-risk youth nearly as accurately as an unabridged survey containing 173 items.","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aoas1657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Crime prevention strategies based on early intervention depend on accurate risk assessment instruments for identifying high-risk youth. It is important in this context that the instruments be convenient to administer, which means, in particular, that they should also be reasonably brief; adaptive screening tests are useful for this purpose. Adaptive tests constructed using classification and regression trees are becoming a popular alternative to traditional item response theory (IRT) approaches for adaptive testing. However, tree-based adaptive tests lack a principled criterion for terminating the test. This paper develops a Bayesian decision theory framework for measuring the trade-off between brevity and accuracy when considering tree-based adaptive screening tests of different lengths. We also present a novel method for designing tree-based adaptive tests, motivated by this framework. The framework and associated adaptive test method are demonstrated through an application to youth delinquency risk assessment in Honduras; it is shown that an adaptive test requiring a subject to answer fewer than 10 questions can identify high-risk youth nearly as accurately as an unabridged survey containing 173 items.