Picosecond laser structuring of graphite anodes—Ablation characteristics and process scaling

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lucas Hille, Johannes Kriegler, Andreas Oehler, Michalina Chaja, Sebastian Wagner, Michael F. Zaeh
{"title":"Picosecond laser structuring of graphite anodes—Ablation characteristics and process scaling","authors":"Lucas Hille, Johannes Kriegler, Andreas Oehler, Michalina Chaja, Sebastian Wagner, Michael F. Zaeh","doi":"10.2351/7.0001087","DOIUrl":null,"url":null,"abstract":"Laser structuring of graphite anodes substantially improves the electrochemical performance of lithium-ion batteries by facilitating lithium-ion diffusion through the electrode coatings. However, laser structuring is not yet established in industrial battery production due to limited knowledge of its ablation behavior and a low processing rate. This publication addresses these issues with a combination of experimental and theoretical approaches. In a comprehensive process study with picosecond pulsed laser radiation, the influence of various laser parameters on the obtained structure geometries, i.e., the hole diameters and depths, was examined. Wavelengths of 532 and 355 nm combined with pulse bursts and fluences of approximately 10 J cm−2 eventuated in favorable hole geometries with a high aspect ratio. Compared to singlebeam laser structuring, a nearly tenfold reduction in the processing time was achieved by beam splitting with a diffractive optical element without compromising structure geometries or mechanical electrode integrity. The experimental findings were used to model the scalability of electrode laser structuring, revealing the significant influence of the hole pattern and distance on the potential processing rate. Ultrashort pulsed laser powers in the kilowatt regime were found to be necessary to laser-structure electrodes at industrial processing rates resulting in estimated costs of roughly 1.96 $/kWh. The findings support the industrialization of laser electrode structuring for commercial lithium-ion battery production.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser structuring of graphite anodes substantially improves the electrochemical performance of lithium-ion batteries by facilitating lithium-ion diffusion through the electrode coatings. However, laser structuring is not yet established in industrial battery production due to limited knowledge of its ablation behavior and a low processing rate. This publication addresses these issues with a combination of experimental and theoretical approaches. In a comprehensive process study with picosecond pulsed laser radiation, the influence of various laser parameters on the obtained structure geometries, i.e., the hole diameters and depths, was examined. Wavelengths of 532 and 355 nm combined with pulse bursts and fluences of approximately 10 J cm−2 eventuated in favorable hole geometries with a high aspect ratio. Compared to singlebeam laser structuring, a nearly tenfold reduction in the processing time was achieved by beam splitting with a diffractive optical element without compromising structure geometries or mechanical electrode integrity. The experimental findings were used to model the scalability of electrode laser structuring, revealing the significant influence of the hole pattern and distance on the potential processing rate. Ultrashort pulsed laser powers in the kilowatt regime were found to be necessary to laser-structure electrodes at industrial processing rates resulting in estimated costs of roughly 1.96 $/kWh. The findings support the industrialization of laser electrode structuring for commercial lithium-ion battery production.
皮秒激光结构石墨阳极烧蚀特性及工艺尺度
石墨阳极的激光结构通过促进锂离子在电极涂层中的扩散,大大提高了锂离子电池的电化学性能。然而,由于对其烧蚀行为的了解有限和加工速率低,激光结构尚未在工业电池生产中建立。本出版物通过实验和理论方法的结合来解决这些问题。在皮秒脉冲激光辐射的综合工艺研究中,考察了各种激光参数对所获得的结构几何形状,即孔直径和深度的影响。波长为532和355nm,结合脉冲爆发和大约10jcm−2的影响,最终形成了具有高纵横比的有利孔几何形状。与单光束激光结构相比,通过衍射光学元件的光束分裂,在不影响结构几何形状或机械电极完整性的情况下,实现了加工时间的近十倍减少。利用实验结果对电极激光结构的可扩展性进行建模,揭示了空穴模式和距离对电位加工速率的显著影响。研究发现,在工业加工速率下,激光结构电极需要千瓦级的超短脉冲激光功率,估计成本约为1.96美元/千瓦时。这一发现为商用锂离子电池生产的激光电极结构产业化提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信