Markovian Erlang Non-Constricted Single-Channel with Encouraged Arrival in Steady State with Balking, Feedback Strategy, and Customer Retention

IF 0.6 Q3 MATHEMATICS
Ismailkhan Enayathulla Khan, Rajendran Paramasivam
{"title":"Markovian Erlang Non-Constricted Single-Channel with Encouraged Arrival in Steady State with Balking, Feedback Strategy, and Customer Retention","authors":"Ismailkhan Enayathulla Khan, Rajendran Paramasivam","doi":"10.37256/cm.4420232964","DOIUrl":null,"url":null,"abstract":"In this article, we aim to provide a solution for the Markovian Erlang non-constricted queue that takes into account encouraged arrival, balking feedback strategy, and customer retention, all in a steady state. Our approach involved using an iterative technique to determine the probability of “n” customers in the system occupying stage “s”, the probability of an empty system, and the efficiency of the queuing system. To illustrate the relationship between probability and these additional concepts, we present numerical data.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"11 5","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we aim to provide a solution for the Markovian Erlang non-constricted queue that takes into account encouraged arrival, balking feedback strategy, and customer retention, all in a steady state. Our approach involved using an iterative technique to determine the probability of “n” customers in the system occupying stage “s”, the probability of an empty system, and the efficiency of the queuing system. To illustrate the relationship between probability and these additional concepts, we present numerical data.
马尔可夫-厄朗非约束单通道与阻碍、反馈策略和客户保留的鼓励到达稳态
在本文中,我们的目标是为马尔可夫Erlang非约束队列提供一个解决方案,该解决方案考虑了鼓励到达、阻碍反馈策略和客户保留,所有这些都处于稳定状态。我们的方法涉及使用迭代技术来确定“n”个客户在系统占用阶段“s”中的概率,空系统的概率以及排队系统的效率。为了说明概率和这些附加概念之间的关系,我们提供了数值数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信