Asymptotic Relative Efficiency of Parametric and Nonparametric Survival Estimators

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-10-25 DOI:10.3390/stats6040072
Szilárd Nemes
{"title":"Asymptotic Relative Efficiency of Parametric and Nonparametric Survival Estimators","authors":"Szilárd Nemes","doi":"10.3390/stats6040072","DOIUrl":null,"url":null,"abstract":"The dominance of non- and semi-parametric methods in survival analysis is not without criticism. Several studies have highlighted the decrease in efficiency compared to parametric methods. We revisit the problem of Asymptotic Relative Efficiency (ARE) of the Kaplan–Meier survival estimator compared to parametric survival estimators. We begin by generalizing Miller’s approach and presenting a formula that enables the estimation (numerical or exact) of ARE for various survival distributions and types of censoring. We examine the effect of follow-up time and censoring on ARE. The article concludes with a discussion about the reasons behind the lower and time-dependent ARE of the Kaplan–Meier survival estimator.","PeriodicalId":93142,"journal":{"name":"Stats","volume":"32 7","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6040072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The dominance of non- and semi-parametric methods in survival analysis is not without criticism. Several studies have highlighted the decrease in efficiency compared to parametric methods. We revisit the problem of Asymptotic Relative Efficiency (ARE) of the Kaplan–Meier survival estimator compared to parametric survival estimators. We begin by generalizing Miller’s approach and presenting a formula that enables the estimation (numerical or exact) of ARE for various survival distributions and types of censoring. We examine the effect of follow-up time and censoring on ARE. The article concludes with a discussion about the reasons behind the lower and time-dependent ARE of the Kaplan–Meier survival estimator.
参数和非参数生存估计量的渐近相对效率
非参数和半参数方法在生存分析中的主导地位并非没有批评。一些研究强调了与参数方法相比效率的降低。我们重新审视Kaplan-Meier生存估计量与参数生存估计量的渐近相对效率(ARE)问题。我们首先推广米勒的方法,并提出一个公式,该公式能够估计各种生存分布和审查类型的ARE(数值或精确)。我们考察了跟踪时间和审查对ARE的影响。本文最后讨论了Kaplan-Meier生存估计的较低且随时间变化的ARE背后的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信