Ijeoma Amuche Chikwendu, Xiaoling Zhang, Isaac Osei Agyemang, Isaac Adjei-Mensah, Ukwuoma Chiagoziem Chima, Chukwuebuka Joseph Ejiyi
{"title":"A Comprehensive Survey on Deep Graph Representation Learning Methods","authors":"Ijeoma Amuche Chikwendu, Xiaoling Zhang, Isaac Osei Agyemang, Isaac Adjei-Mensah, Ukwuoma Chiagoziem Chima, Chukwuebuka Joseph Ejiyi","doi":"10.1613/jair.1.14768","DOIUrl":null,"url":null,"abstract":"There has been a lot of activity in graph representation learning in recent years. Graph representation learning aims to produce graph representation vectors to represent the structure and characteristics of huge graphs precisely. This is crucial since the effectiveness of the graph representation vectors will influence how well they perform in subsequent tasks like anomaly detection, connection prediction, and node classification. Recently, there has been an increase in the use of other deep-learning breakthroughs for data-based graph problems. Graph-based learning environments have a taxonomy of approaches, and this study reviews all their learning settings. The learning problem is theoretically and empirically explored. This study briefly introduces and summarizes the Graph Neural Architecture Search (G-NAS), outlines several Graph Neural Networks’ drawbacks, and suggests some strategies to mitigate these challenges. Lastly, the study discusses several potential future study avenues yet to be explored.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1613/jair.1.14768","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
There has been a lot of activity in graph representation learning in recent years. Graph representation learning aims to produce graph representation vectors to represent the structure and characteristics of huge graphs precisely. This is crucial since the effectiveness of the graph representation vectors will influence how well they perform in subsequent tasks like anomaly detection, connection prediction, and node classification. Recently, there has been an increase in the use of other deep-learning breakthroughs for data-based graph problems. Graph-based learning environments have a taxonomy of approaches, and this study reviews all their learning settings. The learning problem is theoretically and empirically explored. This study briefly introduces and summarizes the Graph Neural Architecture Search (G-NAS), outlines several Graph Neural Networks’ drawbacks, and suggests some strategies to mitigate these challenges. Lastly, the study discusses several potential future study avenues yet to be explored.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.