Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal

Sunarti Passura Backar, Purnawansyah Purnawansyah, Herdianti Darwis, Wistiani Astuti
{"title":"Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal","authors":"Sunarti Passura Backar, Purnawansyah Purnawansyah, Herdianti Darwis, Wistiani Astuti","doi":"10.30591/jpit.v8i2.5186","DOIUrl":null,"url":null,"abstract":"Plants are vital to human life on earth, and the leaves and their whole parts have many benefits. These parts of the plant can help distinguish between different species. The leaf identification can be performed at any time, while the other parts of the plants can only be identified at a certain time. The study aims to classify two types of herbs i.e. saur-opus androgynous and moringa oleifera, implementing the Fourier Descriptor method to extract the shape and texture features. In the process of classification using the Naïve Bayes method with three types of nuclei (Gaussian, Bernoulli, and Multinomial) and a Convolutional Neural Network. The testing process was carried out using two scenarios, dark and light, where each scenario consisted of 240 images for a total of 480 images divided into 20% of the data testing and 80% of the training data. The Fourier Descriptor-Bernoulli Naive Bayes method gives the lowest accuracy in both light and dark scenarios, at 46% and 52%, respectively. As for the classification of herbal leaves using a combination of the Fourier Descriptor-Convolutional Neural Network method, it is recommended to be used in light image scenarios and Fourier Descriptor-Gaussian Naive Bayes in the dark scenarios because it is able to detect herbal leaf types with 100% accuracy.","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i2.5186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Plants are vital to human life on earth, and the leaves and their whole parts have many benefits. These parts of the plant can help distinguish between different species. The leaf identification can be performed at any time, while the other parts of the plants can only be identified at a certain time. The study aims to classify two types of herbs i.e. saur-opus androgynous and moringa oleifera, implementing the Fourier Descriptor method to extract the shape and texture features. In the process of classification using the Naïve Bayes method with three types of nuclei (Gaussian, Bernoulli, and Multinomial) and a Convolutional Neural Network. The testing process was carried out using two scenarios, dark and light, where each scenario consisted of 240 images for a total of 480 images divided into 20% of the data testing and 80% of the training data. The Fourier Descriptor-Bernoulli Naive Bayes method gives the lowest accuracy in both light and dark scenarios, at 46% and 52%, respectively. As for the classification of herbal leaves using a combination of the Fourier Descriptor-Convolutional Neural Network method, it is recommended to be used in light image scenarios and Fourier Descriptor-Gaussian Naive Bayes in the dark scenarios because it is able to detect herbal leaf types with 100% accuracy.
混合傅立叶描述符奈维贝叶斯和 CNN 在草本植物叶片分类上的应用
植物对地球上的人类生命至关重要,叶子和它们的整个部分有很多好处。植物的这些部分可以帮助区分不同的物种。叶片的鉴定可以在任何时间进行,而植物的其他部分只能在特定的时间进行鉴定。本研究旨在对雌雄同体的火龙花和辣木两类草本植物进行分类,并采用傅里叶描述子方法提取其形状和纹理特征。在分类过程中使用Naïve贝叶斯方法与三种核(高斯、伯努利和多项式)和卷积神经网络。测试过程采用黑暗和光明两种场景进行,每种场景由240张图像组成,共480张图像,分为20%的数据测试和80%的训练数据。傅里叶描述符-伯努利朴素贝叶斯方法在光明和黑暗场景下的准确率最低,分别为46%和52%。对于结合傅里叶描述符-卷积神经网络方法对草本叶进行分类,建议在光照场景下使用,在黑暗场景下使用傅里叶描述符-高斯朴素贝叶斯方法,因为它能够以100%的准确率检测草本叶类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信