On a Brezis-Oswald-type result for degenerate Kirchhoff problems

IF 1.1 3区 数学 Q1 MATHEMATICS
Stefano Biagi, Eugenio Vecchi
{"title":"On a Brezis-Oswald-type result for degenerate Kirchhoff problems","authors":"Stefano Biagi, Eugenio Vecchi","doi":"10.3934/dcds.2023122","DOIUrl":null,"url":null,"abstract":"In the present note we establish an almost-optimal solvability result for Kirchhoff-type problems of the following form$ \\begin{cases} -M\\big(\\|\\nabla u\\|^2_{L^2(\\Omega)}\\big)\\Delta u = f(x, u) & \\text{in } \\Omega , \\\\ u \\geq 0, \\, u\\not\\equiv 0 & \\text{in } \\Omega , \\\\ u = 0 & \\text{on } \\partial \\Omega . \\end{cases} $where $ f $ has sublinear growth and $ M $ is a non-decreasing map with $ M(0)\\geq 0 $. Our approach is purely variational, and the result we obtain is resemblant to the one established by Brezis and Oswald (Nonlinear Anal., 1986) for sublinear elliptic equations.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"120 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023122","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present note we establish an almost-optimal solvability result for Kirchhoff-type problems of the following form$ \begin{cases} -M\big(\|\nabla u\|^2_{L^2(\Omega)}\big)\Delta u = f(x, u) & \text{in } \Omega , \\ u \geq 0, \, u\not\equiv 0 & \text{in } \Omega , \\ u = 0 & \text{on } \partial \Omega . \end{cases} $where $ f $ has sublinear growth and $ M $ is a non-decreasing map with $ M(0)\geq 0 $. Our approach is purely variational, and the result we obtain is resemblant to the one established by Brezis and Oswald (Nonlinear Anal., 1986) for sublinear elliptic equations.
简并Kirchhoff问题的brezis - oswald型结果
本文建立了以下形式$ \begin{cases} -M\big(\|\nabla u\|^2_{L^2(\Omega)}\big)\Delta u = f(x, u) & \text{in } \Omega , \\ u \geq 0, \, u\not\equiv 0 & \text{in } \Omega , \\ u = 0 & \text{on } \partial \Omega . \end{cases} $的kirchhoff型问题的几乎最优可解性结果,其中$ f $具有次线性增长,$ M $是与$ M(0)\geq 0 $的非递减映射。我们的方法是纯变分的,我们得到的结果类似于由Brezis和Oswald(非线性肛门)建立的结果。, 1986)求解次线性椭圆方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信