{"title":"Parabolic fractal dimension of forward-singularities for Navier-Stokes and liquid crystals inequalities","authors":"Gabriel S. Koch","doi":"10.3934/dcds.2023121","DOIUrl":null,"url":null,"abstract":"In 1985, V. Scheffer discussed partial regularity for what he called solutions to the 'Navier-Stokes inequality', which only satisfy the incompressibility condition as well as the local and global energy inequalities and the pressure equation which may be derived formally from the Navier-Stokes system. One may extend this notion to a system introduced by F.-H. Lin and C. Liu in 1995 to model the flow of nematic liquid crystals, which include the Navier-Stokes system when the 'director field' $ d $ is taken to be zero. The model includes a further parabolic system which implies an a priori maximum principle for $ d $, which is lost when one considers the analogous 'inequality'.In 2018, Q. Liu proved a partial regularity result for solutions to the Lin-Liu model in terms of the 'parabolic fractal dimension' $ \\text{dim}_{ \\text{pf}} $, relying on the boundedness of $ d $ coming from the maximum principle. Q. Liu proves $ { \\text{dim}_{ \\text{pf}}(\\Sigma_{-} \\cap \\mathcal{K}) \\leq \\tfrac{95}{63}} $ for any compact $ \\mathcal{K} $, where $ \\Sigma_{-} $ is the set of space-time points near which the solution blows up forwards in time. For solutions to the corresponding 'inequality', we prove that, without any compensation for the lack of maximum principle, one has $ { \\text{dim}_{ \\text{pf}}(\\Sigma_{-} \\cap \\mathcal{K}) \\leq \\tfrac {55}{13}} $. We also provide a range of criteria, including as just one example the boundedness of $ d $, any one of which would furthermore imply that solutions to the inequality also satisfy $ { \\text{dim}_{ \\text{pf}}(\\Sigma_{-} \\cap \\mathcal{K}) \\leq \\tfrac{95}{63}} $.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In 1985, V. Scheffer discussed partial regularity for what he called solutions to the 'Navier-Stokes inequality', which only satisfy the incompressibility condition as well as the local and global energy inequalities and the pressure equation which may be derived formally from the Navier-Stokes system. One may extend this notion to a system introduced by F.-H. Lin and C. Liu in 1995 to model the flow of nematic liquid crystals, which include the Navier-Stokes system when the 'director field' $ d $ is taken to be zero. The model includes a further parabolic system which implies an a priori maximum principle for $ d $, which is lost when one considers the analogous 'inequality'.In 2018, Q. Liu proved a partial regularity result for solutions to the Lin-Liu model in terms of the 'parabolic fractal dimension' $ \text{dim}_{ \text{pf}} $, relying on the boundedness of $ d $ coming from the maximum principle. Q. Liu proves $ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac{95}{63}} $ for any compact $ \mathcal{K} $, where $ \Sigma_{-} $ is the set of space-time points near which the solution blows up forwards in time. For solutions to the corresponding 'inequality', we prove that, without any compensation for the lack of maximum principle, one has $ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac {55}{13}} $. We also provide a range of criteria, including as just one example the boundedness of $ d $, any one of which would furthermore imply that solutions to the inequality also satisfy $ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac{95}{63}} $.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.