{"title":"Limiting behavior of invariant or periodic measure of Hopfield neural models driven by locally Lipschitz Lévy noise","authors":"Hailang Bai, Yan Wang, Yu Wang","doi":"10.3934/dcdss.2023195","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence and limiting behavior of invariant probability measures or periodic probability measures for a type of widely used Hopfield-type lattice models with two nonlinear terms of arbitrary polynomial growth on the entire integer set $ \\mathbb{Z}^d $ driven by nonlinear white noise and Lévy noise. First, when the noise intensity is within a controllable range, we prove that the family probability distribution laws solutions and use the weak convergence method to prove the existence of invariant probability measures. Then, when the terms that change over time are periodic we also discussed the periodic probability measures existence in a weighted $ \\ell_\\rho^2 $ space. Finally, the limiting behavior of the collection of all invariant or periodic probability measures weakly compact are studied for Hopfield models driven by nonlinear white noise and Lévy noise about with noise intensity.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2023195","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the existence and limiting behavior of invariant probability measures or periodic probability measures for a type of widely used Hopfield-type lattice models with two nonlinear terms of arbitrary polynomial growth on the entire integer set $ \mathbb{Z}^d $ driven by nonlinear white noise and Lévy noise. First, when the noise intensity is within a controllable range, we prove that the family probability distribution laws solutions and use the weak convergence method to prove the existence of invariant probability measures. Then, when the terms that change over time are periodic we also discussed the periodic probability measures existence in a weighted $ \ell_\rho^2 $ space. Finally, the limiting behavior of the collection of all invariant or periodic probability measures weakly compact are studied for Hopfield models driven by nonlinear white noise and Lévy noise about with noise intensity.
期刊介绍:
Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.