{"title":"A numerical investigation of microtube length effect on convective boiling","authors":"Hua-Yi Hsu, Yu-Chen Lin, Zong-You Chen, Ying Wang, Cheng-En Li, Shong-Han Pai, Chia-Wei Lin","doi":"10.1093/jom/ufad029","DOIUrl":null,"url":null,"abstract":"Abstract The microtube length significantly influences the convective boiling process and associated heat transfer characteristics. Other than high heat transfer, low pressure drop is also desired to improve the energy efficiency of the pumping system. This work numerically investigates the microtube length effect on heat transfer and pressure drops of convective boiling with the volume of fluid (VOF) method. The simulation results of vapor formation, heat transfer coefficient, and pressure drop are shown with different microtube lengths L = 2–20 mm. The onset of boiling is around 2 mm away from the mass flux inlet. The subcooled boiling regime can be observed between 2 and 10 mm. Three distinct regimes, liquid single-phase flow, bubbly flow, and plug flow, are shown in the longer microtubes (L = 15 mm and 20 mm). It is found that shorter microtubes can lead to less bubble formation with higher heat transfer and lower pressure drop. The average heat transfer coefficient can achieve 2432 W/(m2K) with a lower quasi-steady total pressure drop Δp|total of 32.8 Pa inside a 2-mm-long microtube. This work offers a detailed study of the impact of microtube length on convective boiling, along with pertinent physical insights. It may serve as an indicator for future microscale heat transfer application designs.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jom/ufad029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The microtube length significantly influences the convective boiling process and associated heat transfer characteristics. Other than high heat transfer, low pressure drop is also desired to improve the energy efficiency of the pumping system. This work numerically investigates the microtube length effect on heat transfer and pressure drops of convective boiling with the volume of fluid (VOF) method. The simulation results of vapor formation, heat transfer coefficient, and pressure drop are shown with different microtube lengths L = 2–20 mm. The onset of boiling is around 2 mm away from the mass flux inlet. The subcooled boiling regime can be observed between 2 and 10 mm. Three distinct regimes, liquid single-phase flow, bubbly flow, and plug flow, are shown in the longer microtubes (L = 15 mm and 20 mm). It is found that shorter microtubes can lead to less bubble formation with higher heat transfer and lower pressure drop. The average heat transfer coefficient can achieve 2432 W/(m2K) with a lower quasi-steady total pressure drop Δp|total of 32.8 Pa inside a 2-mm-long microtube. This work offers a detailed study of the impact of microtube length on convective boiling, along with pertinent physical insights. It may serve as an indicator for future microscale heat transfer application designs.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.