On power integral bases of certain pure number fields defined by $x^{84}-m$

Pub Date : 2023-06-28 DOI:10.33044/revuma.2836
Lhoussain El Fadil, Omar Kchit, Hanan Choulli
{"title":"On power integral bases of certain pure number fields defined by $x^{84}-m$","authors":"Lhoussain El Fadil, Omar Kchit, Hanan Choulli","doi":"10.33044/revuma.2836","DOIUrl":null,"url":null,"abstract":"Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{60}-m\\in \\mathbb{Z}[x]$, with $m\\neq \\pm1$ a square free integer. In this paper, we study the monogeneity of $K$. We prove that if $m\\not\\equiv 1\\md{4}$, $m\\not\\equiv \\mp 1 \\md{9} $ and $\\overline{m}\\not\\in\\{\\mp 1,\\mp 7\\} \\md{25}$, then $K$ is monogenic. But if $m\\equiv 1\\md{4}$, $m\\equiv \\mp1 \\md{9}$, or $m\\equiv \\mp 1\\md{25}$, then $K$ is not monogenic. Our results are illustrated by examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.2836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{60}-m\in \mathbb{Z}[x]$, with $m\neq \pm1$ a square free integer. In this paper, we study the monogeneity of $K$. We prove that if $m\not\equiv 1\md{4}$, $m\not\equiv \mp 1 \md{9} $ and $\overline{m}\not\in\{\mp 1,\mp 7\} \md{25}$, then $K$ is monogenic. But if $m\equiv 1\md{4}$, $m\equiv \mp1 \md{9}$, or $m\equiv \mp 1\md{25}$, then $K$ is not monogenic. Our results are illustrated by examples.
分享
查看原文
关于由x^{84}-m定义的纯数域的幂积分基
设$K$为由一元不可约多项式$F(x)=x^{60}-m\in \mathbb{Z}[x]$的复根生成的纯数域,其中$m\neq \pm1$为自由平方整数。本文研究了$K$的单性性。我们证明了如果$m\not\equiv 1\md{4}$, $m\not\equiv \mp 1 \md{9} $和$\overline{m}\not\in\{\mp 1,\mp 7\} \md{25}$,那么$K$是单基因的。但是如果$m\equiv 1\md{4}$, $m\equiv \mp1 \md{9}$或$m\equiv \mp 1\md{25}$,那么$K$就不是单基因的。用实例说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信