Andrés Mauricio Cárdenas Torres, Luis Carlos Ealo Otero, Juliana Uribe Perez, Beatriz Liliana Gomez Gomez
{"title":"Using Machine Learning Algorithms for Neurodegenerative Disease Gait Classification","authors":"Andrés Mauricio Cárdenas Torres, Luis Carlos Ealo Otero, Juliana Uribe Perez, Beatriz Liliana Gomez Gomez","doi":"10.21500/20275846.6081","DOIUrl":null,"url":null,"abstract":"La detección de los síntomas de las enfermedades neurodegenerativas suele producirse en las últimas fases de la enfermedad, por lo que una detección temprana ayudaría a mejorar la calidad de vida del paciente. La base de datos PhysioNet proporciona información sobre la biomecánica de pacientes con la enfermedad de Parkinson (EP), la esclerosis lateral amiotrófica (ELA) y la enfermedad de Huntington (EH). En este trabajo se utilizan datos espacio-temporales para medir el coste energético y la densidad espectral de potencia en estas patologías. Se utilizan técnicas de c-medias difusas, algoritmo de aprendizaje para el análisis de datos multivariados - LAMDA, y redes neuronales para clasificar datos de marcha de voluntarios con enfermedades neurodegenerativas y un grupo de control. Se entrenaron clasificadores de dos clases: Ctrl+PD, Ctrl+PD y Ctrl+HD. El emparejamiento mejoró el ajuste de LAMDA con un 98,3%, el de la red neuronal con un 97,0% y el de Fuzzy C-means con un 90,2%. El uso potencial de estas técnicas de clasificación permitirá la detección temprana de enfermedades neurodegenerativas, incluyendo nuevos dispositivos que permitan el análisis de la marcha fuera del laboratorio.","PeriodicalId":340017,"journal":{"name":"Ingenierías USBMed","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenierías USBMed","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21500/20275846.6081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
La detección de los síntomas de las enfermedades neurodegenerativas suele producirse en las últimas fases de la enfermedad, por lo que una detección temprana ayudaría a mejorar la calidad de vida del paciente. La base de datos PhysioNet proporciona información sobre la biomecánica de pacientes con la enfermedad de Parkinson (EP), la esclerosis lateral amiotrófica (ELA) y la enfermedad de Huntington (EH). En este trabajo se utilizan datos espacio-temporales para medir el coste energético y la densidad espectral de potencia en estas patologías. Se utilizan técnicas de c-medias difusas, algoritmo de aprendizaje para el análisis de datos multivariados - LAMDA, y redes neuronales para clasificar datos de marcha de voluntarios con enfermedades neurodegenerativas y un grupo de control. Se entrenaron clasificadores de dos clases: Ctrl+PD, Ctrl+PD y Ctrl+HD. El emparejamiento mejoró el ajuste de LAMDA con un 98,3%, el de la red neuronal con un 97,0% y el de Fuzzy C-means con un 90,2%. El uso potencial de estas técnicas de clasificación permitirá la detección temprana de enfermedades neurodegenerativas, incluyendo nuevos dispositivos que permitan el análisis de la marcha fuera del laboratorio.