UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVE ON A METRIC GRAPH

Q4 Mathematics
Z.A. Sobirov, J.R. Khujakulov, A.A. Turemuratova
{"title":"UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVE ON A METRIC GRAPH","authors":"Z.A. Sobirov, J.R. Khujakulov, A.A. Turemuratova","doi":"10.47475/2500-0101-2023-8-3-351-370","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.","PeriodicalId":36654,"journal":{"name":"Chelyabinsk Physical and Mathematical Journal","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chelyabinsk Physical and Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47475/2500-0101-2023-8-3-351-370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.
度量图上具有分数阶导数的伪次扩散方程的ibvp的唯一可解性
本文研究了度量图上含有Hilfer时间分数阶导数的伪次扩散方程的初边值问题。在图的边界点,我们使用狄利克雷条件。在图的分支点(内部顶点),我们使用δ型条件。这种条件保证了分支点处的局部通量守恒,也称为基尔霍夫条件。用所谓的能量积分法证明了所考虑问题解的唯一性。证明了所考虑问题正则解的存在性。解是用傅里叶级数的形式构造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chelyabinsk Physical and Mathematical Journal
Chelyabinsk Physical and Mathematical Journal Mathematics-Mathematics (all)
CiteScore
0.90
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信