Jialu Ouyang, Xixi Wang, Dajiang Zheng, Jian Zhang, Zi Ming Wang
{"title":"Molecular origin of the CO2 enhanced water wetting during corrosion of an oil layer-attached steel surface in water flows","authors":"Jialu Ouyang, Xixi Wang, Dajiang Zheng, Jian Zhang, Zi Ming Wang","doi":"10.5006/4295","DOIUrl":null,"url":null,"abstract":"Abstract To understand the role of CO2 in multiphase flow corrosion, the durability of an oil layer attached on steel surface against fluid flows was systematically evaluated. It confirms that CO2 can destabilize the protective oil layer and initiate electrochemical corrosion through the oil layer, showing a solution chemistry governed by flow dependency. The CO2 induced oil layer rupture was attributed to the water droplet actions at the oil/water interface and the steel surface, where the generation of micro-droplets were facilitated by the interactions between the dissolved CO2 and the oil molecules. It gives new insights into the replacement of oil layer by water in CO2 containing multiphase fluids, which benefits many application fields, such as corrosion and lubrication in oil-water mixed environments.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":"125 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5006/4295","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract To understand the role of CO2 in multiphase flow corrosion, the durability of an oil layer attached on steel surface against fluid flows was systematically evaluated. It confirms that CO2 can destabilize the protective oil layer and initiate electrochemical corrosion through the oil layer, showing a solution chemistry governed by flow dependency. The CO2 induced oil layer rupture was attributed to the water droplet actions at the oil/water interface and the steel surface, where the generation of micro-droplets were facilitated by the interactions between the dissolved CO2 and the oil molecules. It gives new insights into the replacement of oil layer by water in CO2 containing multiphase fluids, which benefits many application fields, such as corrosion and lubrication in oil-water mixed environments.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.