Ionosphere-thermosphere coupling via global-scale waves: new insights from two-years of concurrent in situ and remotely-sensed satellite observations

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Federico Gasperini, Brian J. Harding, Geoffrey Crowley, Thomas J. Immel
{"title":"Ionosphere-thermosphere coupling via global-scale waves: new insights from two-years of concurrent in situ and remotely-sensed satellite observations","authors":"Federico Gasperini, Brian J. Harding, Geoffrey Crowley, Thomas J. Immel","doi":"10.3389/fspas.2023.1217737","DOIUrl":null,"url":null,"abstract":"Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes ( <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m1\"><mml:mo><</mml:mo></mml:math> 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneous in situ ion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generated in situ . Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due to in situ tidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"124 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1217737","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes ( < 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneous in situ ion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generated in situ . Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due to in situ tidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves.
通过全球尺度波的电离层-热层耦合:来自两年同步原位和遥感卫星观测的新见解
越来越多的证据表明,来自低层大气的一组选定的全球尺度波构成了电离层-热层(IT, 100-600公里)变率的重要来源。由于磁力线的几何形状,这种IT耦合主要发生在低纬度地区(<30°),由纬向波数s =−3的日东传播潮(DE3)和s =−1的准3天超快开尔文波(UFKW1)等源自热带对流层的波驱动。在这项工作中,在590公里附近的电离层连接探测器(ICON)上的离子速度计(IVMs)和420公里附近的电离层对电动力学(SORTIE)立方体卫星的闪烁观测和响应同时进行了2年多的原位离子密度测量,利用ICON的全球高分辨率热层成像迈克尔逊干涉仪(might)遥感到的低层(约105公里)和中层(约220公里)热层水平风,展示了这些IT区域耦合的丰富波谱。上层电离层强烈的DE3和UFKW1变化归因于低层纬向风,而大的日s = 2 (DW2)和纬向对称(D0)变化归因于原位产生的中层热层风。热层气候潮汐模式(CTMT)的日潮汐分析表明,在105 km附近的日潮汐大致一致,而在220 km附近,由于CTMT没有捕捉到原位潮汐,差异较大。本研究强调了同步卫星测量对通过全球尺度波的信息技术耦合研究的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信