Bipartite-ness under smooth conditions

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Tao Jiang, Sean Longbrake, Jie Ma
{"title":"Bipartite-ness under smooth conditions","authors":"Tao Jiang, Sean Longbrake, Jie Ma","doi":"10.1017/s0963548323000019","DOIUrl":null,"url":null,"abstract":"Abstract Given a family \n$\\mathcal{F}$\n of bipartite graphs, the Zarankiewicz number \n$z(m,n,\\mathcal{F})$\n is the maximum number of edges in an \n$m$\n by \n$n$\n bipartite graph \n$G$\n that does not contain any member of \n$\\mathcal{F}$\n as a subgraph (such \n$G$\n is called \n$\\mathcal{F}$\n -free). For \n$1\\leq \\beta \\lt \\alpha \\lt 2$\n , a family \n$\\mathcal{F}$\n of bipartite graphs is \n$(\\alpha,\\beta )$\n -smooth if for some \n$\\rho \\gt 0$\n and every \n$m\\leq n$\n , \n$z(m,n,\\mathcal{F})=\\rho m n^{\\alpha -1}+O(n^\\beta )$\n . Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any \n$(\\alpha,\\beta )$\n -smooth family \n$\\mathcal{F}$\n , there exists \n$k_0$\n such that for all odd \n$k\\geq k_0$\n and sufficiently large \n$n$\n , any \n$n$\n -vertex \n$\\mathcal{F}\\cup \\{C_k\\}$\n -free graph with minimum degree at least \n$\\rho (\\frac{2n}{5}+o(n))^{\\alpha -1}$\n is bipartite. In this paper, we strengthen their result by showing that for every real \n$\\delta \\gt 0$\n , there exists \n$k_0$\n such that for all odd \n$k\\geq k_0$\n and sufficiently large \n$n$\n , any \n$n$\n -vertex \n$\\mathcal{F}\\cup \\{C_k\\}$\n -free graph with minimum degree at least \n$\\delta n^{\\alpha -1}$\n is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families \n$\\mathcal{F}$\n consisting of the single graph \n$K_{s,t}$\n when \n$t\\gg s$\n . We also prove an analogous result for \n$C_{2\\ell }$\n -free graphs for every \n$\\ell \\geq 2$\n , which complements a result of Keevash, Sudakov and Verstraëte.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Given a family $\mathcal{F}$ of bipartite graphs, the Zarankiewicz number $z(m,n,\mathcal{F})$ is the maximum number of edges in an $m$ by $n$ bipartite graph $G$ that does not contain any member of $\mathcal{F}$ as a subgraph (such $G$ is called $\mathcal{F}$ -free). For $1\leq \beta \lt \alpha \lt 2$ , a family $\mathcal{F}$ of bipartite graphs is $(\alpha,\beta )$ -smooth if for some $\rho \gt 0$ and every $m\leq n$ , $z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$ . Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any $(\alpha,\beta )$ -smooth family $\mathcal{F}$ , there exists $k_0$ such that for all odd $k\geq k_0$ and sufficiently large $n$ , any $n$ -vertex $\mathcal{F}\cup \{C_k\}$ -free graph with minimum degree at least $\rho (\frac{2n}{5}+o(n))^{\alpha -1}$ is bipartite. In this paper, we strengthen their result by showing that for every real $\delta \gt 0$ , there exists $k_0$ such that for all odd $k\geq k_0$ and sufficiently large $n$ , any $n$ -vertex $\mathcal{F}\cup \{C_k\}$ -free graph with minimum degree at least $\delta n^{\alpha -1}$ is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families $\mathcal{F}$ consisting of the single graph $K_{s,t}$ when $t\gg s$ . We also prove an analogous result for $C_{2\ell }$ -free graphs for every $\ell \geq 2$ , which complements a result of Keevash, Sudakov and Verstraëte.
光滑条件下的双方性
给定一个家庭 $\mathcal{F}$ 二部图的,Zarankiewicz数 $z(m,n,\mathcal{F})$ a的最大边数是多少 $m$ 通过 $n$ 二部图 $G$ 它不包含任何元素 $\mathcal{F}$ 作为子图(如 $G$ 叫做 $\mathcal{F}$ 免费)。因为 $1\leq \beta \lt \alpha \lt 2$ ,一个家庭 $\mathcal{F}$ 二部图的 $(\alpha,\beta )$ -对一些人来说是平滑的 $\rho \gt 0$ 每一个 $m\leq n$ , $z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$ . 受Erdős和Simonovits关于紧致性的猜想以及Andrásfai、Erdős和Sós的经典结果的启发,Allen、Keevash、Sudakov和Verstraëte证明了这一点 $(\alpha,\beta )$ -平滑家族 $\mathcal{F}$ ,存在 $k_0$ 这样,对于所有奇数 $k\geq k_0$ 并且足够大 $n$ ,任何 $n$ -顶点 $\mathcal{F}\cup \{C_k\}$ 具有最小度的自由图 $\rho (\frac{2n}{5}+o(n))^{\alpha -1}$ 是二部的。在本文中,我们通过证明对于每一个实数 $\delta \gt 0$ ,存在 $k_0$ 这样,对于所有奇数 $k\geq k_0$ 并且足够大 $n$ ,任何 $n$ -顶点 $\mathcal{F}\cup \{C_k\}$ 具有最小度的自由图 $\delta n^{\alpha -1}$ 是二部的。此外,我们的结果在更宽松的平滑概念下成立,其中包括家庭 $\mathcal{F}$ 由单个图组成的 $K_{s,t}$ 什么时候 $t\gg s$ . 我们也证明了一个类似的结果 $C_{2\ell }$ 所有的自由图 $\ell \geq 2$ ,这是对Keevash、Sudakov和Verstraëte研究结果的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信