{"title":"State-of-the-art strategies to prioritize Mycobacterium tuberculosis drug targets for drug discovery using a subtractive genomics approach","authors":"Adetutu Akinnuwesi, Samuel Egieyeh, Ruben Cloete","doi":"10.3389/fddsv.2023.1254656","DOIUrl":null,"url":null,"abstract":"Tuberculosis remains one of the causes of death from a single infectious bacterium. The inappropriate use of antibiotics and patients’ non-compliance among other factors drive the emergence of drug-resistant tuberculosis. Multidrug-resistant and extensively drug-resistant strains of tuberculosis pose significant challenges to current treatment regimens, as their reduced efficacy against these strains limits successful patient outcomes. Furthermore, the limited effectiveness and associated toxicity of second-line drugs further compound the issue. Moreover, the scarcity of novel pharmacological targets and the subsequent decline in the number of anti-TB compounds in the drug development pipeline has further hindered the emergence of new therapies. As a result, researchers need to develop innovative approaches to identify potential new anti-TB drugs. The evolution of technology and the breakthrough in omics data allow the use of computational biology approaches, for example, metabolomic analysis to uncover pharmacological targets for structured-based drug design. The role of metabolism in pathogen development, growth, survival, and infection has been established. Therefore, this review focuses on the M. tb metabolic network as a hub for novel target identification and highlights a step-by-step subtractive genomics approach for target prioritization.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2023.1254656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis remains one of the causes of death from a single infectious bacterium. The inappropriate use of antibiotics and patients’ non-compliance among other factors drive the emergence of drug-resistant tuberculosis. Multidrug-resistant and extensively drug-resistant strains of tuberculosis pose significant challenges to current treatment regimens, as their reduced efficacy against these strains limits successful patient outcomes. Furthermore, the limited effectiveness and associated toxicity of second-line drugs further compound the issue. Moreover, the scarcity of novel pharmacological targets and the subsequent decline in the number of anti-TB compounds in the drug development pipeline has further hindered the emergence of new therapies. As a result, researchers need to develop innovative approaches to identify potential new anti-TB drugs. The evolution of technology and the breakthrough in omics data allow the use of computational biology approaches, for example, metabolomic analysis to uncover pharmacological targets for structured-based drug design. The role of metabolism in pathogen development, growth, survival, and infection has been established. Therefore, this review focuses on the M. tb metabolic network as a hub for novel target identification and highlights a step-by-step subtractive genomics approach for target prioritization.