SUMSETS CONTAINING A TERM OF A SEQUENCE

Pub Date : 2023-09-18 DOI:10.1017/s0004972723000904
MIN CHEN, MIN TANG
{"title":"SUMSETS CONTAINING A TERM OF A SEQUENCE","authors":"MIN CHEN, MIN TANG","doi":"10.1017/s0004972723000904","DOIUrl":null,"url":null,"abstract":"Abstract Let $S=\\{s_{1}, s_{2}, \\ldots \\}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\\alpha $ as $n\\rightarrow \\infty $ and let $\\beta>\\max (\\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\\subset [0, l]$ with $l\\in A$ , $\\gcd A=1$ and $|A|\\geq (2-{k}/{\\lambda \\beta })l/(\\lambda +1)$ , where $\\lambda =\\lceil {k}/{\\beta }\\rceil $ , then $kA\\cap S\\neq \\emptyset $ for $2<\\beta \\leq 3$ and $k\\geq {2\\beta }/{(\\beta -2)}$ or for $\\beta>3$ and $k\\geq 3$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\alpha $ as $n\rightarrow \infty $ and let $\beta>\max (\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\subset [0, l]$ with $l\in A$ , $\gcd A=1$ and $|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$ , where $\lambda =\lceil {k}/{\beta }\rceil $ , then $kA\cap S\neq \emptyset $ for $2<\beta \leq 3$ and $k\geq {2\beta }/{(\beta -2)}$ or for $\beta>3$ and $k\geq 3$ .
分享
查看原文
包含一个序列项的集合
设$S=\{s_{1}, s_{2}, \ldots \}$是一个无界正整数序列,其中$s_{n+1}/s_{n}$逼近$\alpha $为$n\rightarrow \infty $,设$\beta>\max (\alpha , 2)$。我们证明了对于所有足够大的正整数l,如果$A\subset [0, l]$有$l\in A$, $\gcd A=1$和$|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$,其中$\lambda =\lceil {k}/{\beta }\rceil $,则$kA\cap S\neq \emptyset $为$2<\beta \leq 3$和$k\geq {2\beta }/{(\beta -2)}$或$\beta>3$和$k\geq 3$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信