{"title":"SUMSETS CONTAINING A TERM OF A SEQUENCE","authors":"MIN CHEN, MIN TANG","doi":"10.1017/s0004972723000904","DOIUrl":null,"url":null,"abstract":"Abstract Let $S=\\{s_{1}, s_{2}, \\ldots \\}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\\alpha $ as $n\\rightarrow \\infty $ and let $\\beta>\\max (\\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\\subset [0, l]$ with $l\\in A$ , $\\gcd A=1$ and $|A|\\geq (2-{k}/{\\lambda \\beta })l/(\\lambda +1)$ , where $\\lambda =\\lceil {k}/{\\beta }\\rceil $ , then $kA\\cap S\\neq \\emptyset $ for $2<\\beta \\leq 3$ and $k\\geq {2\\beta }/{(\\beta -2)}$ or for $\\beta>3$ and $k\\geq 3$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\alpha $ as $n\rightarrow \infty $ and let $\beta>\max (\alpha , 2)$ . We show that for all sufficiently large positive integers l , if $A\subset [0, l]$ with $l\in A$ , $\gcd A=1$ and $|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$ , where $\lambda =\lceil {k}/{\beta }\rceil $ , then $kA\cap S\neq \emptyset $ for $2<\beta \leq 3$ and $k\geq {2\beta }/{(\beta -2)}$ or for $\beta>3$ and $k\geq 3$ .