A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-09-18 DOI:10.3390/stats6030059
Seng Huat Ong, Shin Zhu Sim, Shuangzhe Liu, Hari M. Srivastava
{"title":"A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data","authors":"Seng Huat Ong, Shin Zhu Sim, Shuangzhe Liu, Hari M. Srivastava","doi":"10.3390/stats6030059","DOIUrl":null,"url":null,"abstract":"This paper considers the construction of a family of discrete distributions with the flexibility to cater for under-, equi- and over-dispersion in count data using a finite mixture model based on standard distributions. We are motivated to introduce this family because its simple finite mixture structure adds flexibility and facilitates application and use in analysis. The family of distributions is exemplified using a mixture of negative binomial and shifted negative binomial distributions. Some basic and probabilistic properties are derived. We perform hypothesis testing for equi-dispersion and simulation studies of their power and consider parameter estimation via maximum likelihood and probability-generating-function-based methods. The utility of the distributions is illustrated via their application to real biological data sets exhibiting under-, equi- and over-dispersion. It is shown that the distribution fits better than the well-known generalized Poisson and COM–Poisson distributions for handling under-, equi- and over-dispersion in count data.","PeriodicalId":93142,"journal":{"name":"Stats","volume":"173 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the construction of a family of discrete distributions with the flexibility to cater for under-, equi- and over-dispersion in count data using a finite mixture model based on standard distributions. We are motivated to introduce this family because its simple finite mixture structure adds flexibility and facilitates application and use in analysis. The family of distributions is exemplified using a mixture of negative binomial and shifted negative binomial distributions. Some basic and probabilistic properties are derived. We perform hypothesis testing for equi-dispersion and simulation studies of their power and consider parameter estimation via maximum likelihood and probability-generating-function-based methods. The utility of the distributions is illustrated via their application to real biological data sets exhibiting under-, equi- and over-dispersion. It is shown that the distribution fits better than the well-known generalized Poisson and COM–Poisson distributions for handling under-, equi- and over-dispersion in count data.
一组有限混合分布用于模拟计数数据中的色散
本文考虑使用基于标准分布的有限混合模型构造一类离散分布,这些分布具有灵活性,可以满足计数数据中的欠分散、等分散和过分散。我们有动机介绍这个家族,因为它简单的有限混合结构增加了灵活性,便于分析中的应用和使用。用负二项分布和移位负二项分布的混合来举例说明分布族。导出了一些基本性质和概率性质。我们对其功率的等分散和模拟研究进行假设检验,并通过最大似然和基于概率生成函数的方法考虑参数估计。分布的效用是通过它们在实际生物数据集上的应用来说明的,这些数据集表现出低分散、均匀分散和过度分散。结果表明,在处理计数数据的欠色散、等色散和过色散时,该分布比众所周知的广义泊松分布和com -泊松分布更适合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信