{"title":"Microbial consortia as an option for biocontrol of <i>Stromatinia cepivora</i>","authors":"Christian David Vargas Baquero, Alba Marina Cotes","doi":"10.1080/07060661.2023.2262959","DOIUrl":null,"url":null,"abstract":"AbstractStromatinia cepivora, the causal agent of white rot, is responsible for 60-80% of economic losses in onion and garlic crops. This work aimed to select biological control agents (BCAs) to control white rot. Ten microorganisms were tested for hyperparasitic activity on S. cepivora sclerotia in garlic (Allium sativum). Bioassays consisted of pots filled with sterile soil and 50 sclerotia in a plastic Tulle bag. Four microorganisms were selected to compare their capability for degrade sclerotia on garlic. Our results showed that increasing degradation happened when Th034, Th035, Th003 and Bs006 were added to the pots containing garlic. Subsequently, three application techniques (seeds, seedlings at transplant, and seeds and transplant) were evaluated. Seven BCAs applied singly and in mixtures were evaluated in semi-field experiments for their ability to reduce white rot symptoms in onion plants in soil inoculated with 300 sclerotia per kilogram. The results indicated that efficacy was dependent on microrganism, mixture, and technique of application. The synergy factor showed that only two treatments have synergistic effects. In both cases, the mixture consisted of a strain of Bacillus and two species of Trichoderma (T. koningiopsis, T. atroviride) applied twice. In most cases, antagonistic interactions among BCAs were observed.Stromatinia cepivora, l’agent causal de la pourriture blanche, est responsable de 60 à 80 % des pertes financières relatives à la culture de l’oignon et de l’ail. Ces travaux visent à sélectionner des agents de lutte biologique (ALB) pour combattre la pourriture blanche. Dix microorganismes ont été testés pour leur activité hyperparasitique envers les sclérotes de S. cepivora chez l’ail (Allium sativum). Des biotests consistaient à placer dans des pots du sol stérile et 50 sclérotes contenus dans des sachets en tulle de plastique. Quatre microorganismes ont été sélectionnés afin de comparer leur capacité à dégrader les sclérotes sur l’ail. Nos résultats ont montré que davantage de dégradation se produisait lorsque Th034, Th035, Th003 et Bs006 étaient ajoutés aux pots contenant l’ail. Subséquemment, trois techniques d’application ont été évaluées (semences, plantules lors de la transplantation et semences et transplantation). Sept ALB appliqués seuls ou combinés ont été évalués au cours d’expériences menées dans des conditions semi-naturelles en vue de déterminer leur capacité à réduire les symptômes de la pourriture blanche chez l’oignon dans un sol inoculé avec 300 sclérotes par kilogramme. Les résultats ont indiqué que l’efficacité dépendait du microorganisme, de la combinaison et de la technique d’application. Le facteur de synergie a démontré que seuls deux traitements ont des effets synergiques. Dans les deux cas, la combinaison consistait en une souche de bacilles et deux espèces de Trichoderma (T. koningiopsis, T. atroviride) appliquées à deux reprises. Dans la plupart des cas, des interactions antagonistes entre les ALB ont été observées.KEYWORDS: antagonismBacillusbiocontrolStromatinia cepivoraTrichodermawhite rotKEYWORDS: MOTS CLÉSAntagonismebacilleslutte biologiquepourriture blancheStromatinia cepivoraTrichodermaDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was carried out with the financial support of the Colombian Corporation for Agricultural Research – AGROSAVIA. The authors thank to the Germplasm Bank of Microorganisms for supplying the biocontrol strains.Conflict of interestThe authors declare that there was no economic or financial interest that could be interpreted as a potential conflict of interest.Availability of data and materialThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.References Abbott WS 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol. 18(2):265–267. doi:10.1093/jee/18.2.265a. [Crossref], [Google Scholar] Abd-Elbaky A, El-Abeid S, Osman N. 2018. Effect of integration between vascular arbuscular mycorrhizal fungi and potassium silicate supplementation on controlling onion white rot. Egypt J Phytopathol. 46(1): 125–142. doi:10.21608/ejp.2018.87774. [Crossref], [Google Scholar] Backhouse D, Stewart, A. 1987. Anatomy and histochemistry of resting and germinating sclerotia of Sclerotium cepivorum. T Brit Mycol Soc. 89(4): 561–567. doi:10.1016/S0007-1536(87)80090-6. [Crossref], [Google Scholar] Barbison, LC. 2014 Analysis of three biological control agents and naturally-occurring fungal colonizers on the survival of sclerotia of Botrytis squamosa, Sclerotinia sclerotiorum and Sclerotium cepivorum [ master’s thesis]. Guelph (ON):University of Guelph. [Google Scholar] Bech L., Busk PK Lange L. 2015. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fung Genomic Biol. 4: 116. [Google Scholar] Bonciu E. 2020. Study regarding the cellular activity in garlic (A. sativum) bulbs affecting by Sclerotium cepivorum. Sci P Series A. Agron. LXIII(1): 186–191. [Google Scholar] CABI (2021). Stromatinia cepivora (white rot of onion and garlic). CAB International; [accessed 2022] Wallingford, UK. https://www.cabi.org/isc/datasheet/49145#toDistributionMaps. [Google Scholar] Castillo N. 2000 Aislamiento, identificación y selección de potenciales hongos antagonistas al hongo Sclerotium cepivorum Berk causante de la pudrición blanca de la cebolla de bulbo (AIIium cepa L.) [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Chien Y-C, Huang C-H 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. null. 156(4): 995–1003. doi:10.1007/s10658-020-01947-5. [Crossref], [Google Scholar] Cimen I, Firing V, Sagir A. 2010. Determination of long-term effects of consecutive effective soil solarization with vesicular arbuscular mycorrhizal (VAM) on white rot disease (Sclerotium cepivorum Berk.) and yield of onion. Res Crop. 11(1): 109–117. [Google Scholar] Clarkson JP, Mead A, Payne T, Whipps JM 2004. Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. null. 53(3): 353–362. doi:10.1111/j.0032-0862.2004.01013.x. [Crossref], [Google Scholar] Clarkson JP, Payne T, Mead A, Whipps JM 2002. Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. null. 51(6): 735–745. doi:10.1046/j.1365-3059.2002.00787.x. [Crossref], [Google Scholar] Coley-Smith JR 1990. White rot disease of Allium: problems of soil-borne diseases in microcosm. null. 39:214–222. 2 10.1111/j.1365-3059.1990.tb02495.x [Crossref], [Google Scholar] Coley-Smith JR, King JE 1969. The production by species of Allium of alkyl sulphides and their effect on germination of sclerotia of Sclerotium cepivorum Berk. Ann Appl Biol. 64(2):289–301. doi:10.1111/j.1744-7348.1969.tb02879.x. [Crossref] [Web of Science ®], [Google Scholar] Cotes AM, Fargetton X, Köhl J, Díaz García A, Gómez Álvarez MI, Grijalba Bernal EP, et al. 2018 Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. 2 Cotes AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria. Spanish. [Crossref], [Google Scholar] Cotes AM, Lepoivre P, Semal J 1996. Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. null. 102(5):497–506. doi:10.1007/bf01877144. [Crossref], [Google Scholar] Cotes Prado AM, Beltrán Acosta CR, Velandia M, Carlos A, Villamizar Rivero LF, Gómez IM, Grijalba Bernal EP, et al. 2011. Trichoderma koningiopsis Th003 alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa. Cotes Prado AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria – Corpoica and Universidad de Cordoba, GANACOR. Spanish. [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2002. Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biol Biochem. 34(7):1037–1045. doi:10.1016/S0038-0717(02)00037-8. [Crossref] [Web of Science ®], [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2005. Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. null. 111(2):101–112. doi:10.1007/s10658-004-1420-0. [Crossref], [Google Scholar] Crowe F, Hall D. 1980. Soil temperature and moisture effects on sclerotium germination and infection of onion seedlings by Sclerotium cepivorum. Phytopathol. 70(1):74–78. [Crossref] [Web of Science ®], [Google Scholar] Crowe FJ. 2008. White Rot. In: Schwartz HF, Krishna Mohan S, editors. Compendium of Onion and Garlic Diseases and Pests. St. Paul (MN): The American Phytopathological Society; p. 22–26. [Google Scholar] Crowe FJ, Darnell T, Thornton M, Davis M, McGrath D, Koepsell P, et al. 1993. White rot control studies show promise of better future. Onion World. 9: 22–25. [Google Scholar] Díaz-García A, García-Riaño J, Zapata-Narvaez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Adv Biosci Biotechnol. 6: 302–310. doi:10.4236/abb.2015.64029. [Crossref], [Google Scholar] Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM. 2019. Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants. Heliyon. 5(1): e01168. doi:10.1016/j.heliyon.2019.e01168. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Elshahawy IE, Saied N, Abd-El-Kareem F, Morsy A. 2017. Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Arch Phytopathol Plant Prot. 50(3–4): 150–166. doi:10.1080/03235408.2016.1276423. [Taylor & Francis Online], [Google Scholar] Elshahawy IE, Saied NM 2021. Reduced sclerotial viability of Stromatinia cepivora and control of white rot disease of onion and garlic by means of soil bio-solarization. null. 160(3): 519–540. doi:10.1007/s10658-021-02260-5. [Crossref], [Google Scholar] Elshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA. 2018. Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. J Plant Pathol. 100(3): 493–503. doi:10.1007/s42161-018-0113-z. [Crossref] [Web of Science ®], [Google Scholar] EPA. 2009. Pesticide Product Label, DADS™ BIOSTIMULANT. US Environmental Protection Agency. 2749–2526. Washington (DC); p. 1–3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/002749-00526-20091125.pdf. [Google Scholar] EPA. 2012. Pesticide Product Label, Quilt Xcel™ US Environmental Protection Agency. 100 1324. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-01324-20120810.pdf. [Google Scholar] EPA. 2013. Pesticide Product Label, Medallion® Fungicide. US Environmental Protection Agency 100-769. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-00769-20130506.pdf. [Google Scholar] EPA. 2016. Pesticide Product Label, FD Tebuconazole 3.6F. US Environmental Protection Agency 91232-3. Washington (DC); p. 1–35 3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/091232-00003-20161215.pdf. [Google Scholar] EPA. 2018. Pesticide Product Label, TIMOREX GOLD. US Environmental Protection Agency. 86182-1. Washington (DC). p. 1–33 2. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/086182-00001-20180531.pdf. [Google Scholar] Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, do Nascimento RP, Bon EPS, et al. 2013. Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Res Int. 2013: 584207. doi:10.1155/2013/584207. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Fuga CAG, Lopes EA, Vieira BS, da Cunha WV. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica. 44(4): 526–531. doi:10.15361/1984-5529.2016v44n4p526-531. [Crossref], [Google Scholar] Galal A-MM. 2006. Induction of systemic acquired resistance in cucumber plant against Cucumber Mosaic Cucumovirus by local Streptomyces strains. Plant Pathol J. 5: 343–349. [Crossref], [Google Scholar] Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al. 2012. Generalized Linear Mixed Models. In: Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al., editors. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. US: American Society of Agronomy. doi:10.2134/2012.generalized-linear-mixed-models.c5; p. 109–197. [Crossref], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathol. 91(7):621–627. doi:10.1094/PHYTO.2001.91.7.621. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathol. 92(9):976–985. doi:10.1094/PHYTO.2002.92.9.976. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Haggag WM, Nofal MA. 2006. Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multi-bioagents in Egypt. Biol Control. 38(3):341–349. doi:10.1016/j.biocontrol.2006.02.010. [Crossref] [Web of Science ®], [Google Scholar] Haichar FZ, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem. 77:69–80. doi:10.1016/j.soilbio.2014.06.017. [Crossref] [Web of Science ®], [Google Scholar] Han KS, Soo Sang H, Ki Heung H, Jong Tae K, Buyng Ryun K, Chang Kook C, et al. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res in Plant Dis. 19(1):21–24. doi:10.5423/RPD.2013.19.1.021. [Crossref], [Google Scholar] Harper GE. 2001 Aspects of the biology of the sclerotia of Sclerotium cepivorum [ dissertation]. Canterbury (NZL): Lincoln University [Google Scholar] Huang J-W, Shih H-D, Huang H-C, Chung W-C. 2007. Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can J Plant Pathol. 29(3):261–267. doi:10.1080/07060660709507468. [Taylor & Francis Online] [Web of Science ®], [Google Scholar] Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, et al. 2016. Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa. Front Microbiol. 7:1657. doi:10.3389/fmicb.2016.01657. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA 2020. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep. 10(1):6857. doi:10.1038/s41598-020-63689-y. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Jaimes Suárez YY, Moreno Velandia CA, Cotes Prado AM. 2009. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta biol.Colomb. 14(3):10. Spanish. [Google Scholar] Kashyap PL, Rai P, Srivastava AK, Kumar S 2017. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol. 33(8):155. doi:10.1007/s11274-017-2319-1. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Katan J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot. 19(8):725–731. doi:10.1016/S0261-2194(00)00096-X. [Crossref] [Web of Science ®], [Google Scholar] Kaur J, Munshi GD, Singh RS, Koch E. 2005. Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. J Phytopathol. 153(5):274–279. doi:10.1111/j.1439-0434.2005.00969.x. [Crossref] [Web of Science ®], [Google Scholar] Kim H, Kim HT, Min YG. 2015. Control activities of fungicides against garlic white rot caused by Sclerotium cepivorum. Korean J Pesticide Sci. 19(1):64–70. doi:10.7585/kjps.2015.19.1.64. [Crossref], [Google Scholar] Knudson C, Geyer CJ, Benson S. 2012. R [software]. v3.5.1. Package ‘glmm’. Vienna: R Foundation for Statistical Computing. [accessed 2021 Feb 2]. [Google Scholar] Lee YH, Kim ES, Heo SJ, Youn HR, Han JH, Kim KS, et al. 2018. C-1 : Bacillus siamensis H30-3 has antifungal activities against phytopathogenic fungi. Mycological Society News, 30(1):94–94. [Google Scholar] Leta A, Selvaraj T, Ambo P. 2013. Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol. 4(1):159. doi:10.4172/2157-7471.1000159 [Crossref], [Google Scholar] Levy Y, Benderly M, Cohen Y, Gisi U, Bassand D. 1986. The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull. 16(4): 651–657. doi:10.1111/j.1365-2338.1986.tb00338.x. [Crossref], [Google Scholar] Mahady GB, Matsuura H, Pendland SL. 2001. Allixin, a phytoalexin from garlic, inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol. 96:3454. doi:10.1111/j.1572-0241.2001.05351.x. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mahdizadehnaraghi R, Heydari A, Zamanizadeh HR, Rezaee S, Nikan J. 2015. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. J Plant Prot Res. 55(2):136–141. doi:10.1515/jppr-2015-0017. [Crossref], [Google Scholar] McLean KL, Swaminathan J, Stewart A 2001. Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biol Biochem. 33(2):137–143. doi:10.1016/S0038-0717(00)00119-X. [Crossref] [Web of Science ®], [Google Scholar] Mesa P, García C, Cotes AM. 2017. En búsqueda de una alternativa de manejo del camanduleo de la papa ocasionada por Spongospora subterranea. Revista Colombiana de Ciencias Hortícolas. 11, 378–386. doi:10.17584/rcch.2017v11i2.6150. Spanish. [Crossref], [Google Scholar] Mesa Quijano EP. 2016. Efecto de microorganismos biocontroladores y aditivos orgánicos sobre el camanduleo de la papa ocasionada por Spongospora subterranea f. sp. subterranea. [ master’s thesis]. Bogota (Col): Universidad Nacional de Colombia-Sede Bogotá. Spanish [Google Scholar] Mesterházy A, Tóth B, Varga M, Bartók T, Szabó-Hevér A, Farády L, et al. 2011. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins. 3(11):1453–1483. doi:10.3390/toxins3111453. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Metcalf DA. 1997. Biological control of Sclerotium cepivorum Berk.(onion white root rot) using Trichoderma koningii Oudem. [ dissertation]. Hobart (AU): University of Tasmania [Google Scholar] Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front Plant Sci. 12:756368. doi: 10.3389/fpls.2021.756368. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mohd-Yusoff J, Alias Z, Simarani K. 2016. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl Biochem Microbiol. 52(3):256–262. doi:10.1134/S0003683816030133. [Crossref] [Web of Science ®], [Google Scholar] Moreno-Velandia CA, Izquierdo-García LF, Ongena M, Kloepper JW, Cotes AM. 2019. Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil. 435(1): 39–55. doi:10.1007/s11104-018-3866-4. [Crossref] [Web of Science ®], [Google Scholar] Moreno C, Kloepper J, Ongena M, Cotes AM. 2014. Biotic factors involved in biological control activity of Bacillus amyloliquefaciens (Bs006) against Fusarium oxysporum in Cape gooseberry (Physalis peruviana). IOBC-WPRS Bull. 115:129–136. [Google Scholar] Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM, et al. 2009. Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol. 74(2):111–120. doi:10.1016/j.pmpp.2009.10.001. [Crossref] [Web of Science ®], [Google Scholar] Nawrocki A. 2016. Effectiveness of the biological control of garlic (Allium sativum L.). Acta Hortic Regiotec. 19(1):15–17. [Crossref], [Google Scholar] Palmieri D, Vitullo D, De Curtis F, Lima G. 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil. 412(1):425–439. doi:10.1007/s11104-016-3080-1. [Crossref] [Web of Science ®], [Google Scholar] Paris A. 2000. Aislamiento, identificación y selección de bacterias y levaduras biocontroladores del fitopatógeno Sclerotium cepivorum Berk., causante de la pudrición blanca en cebolla de bulbo Allium cepa Linneo. [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Paris A, Cotes AM. 2002. Biological control of Sclerotium cepivorum in onion with a yeast and bacteria. IOBC Bull. 25(10):311–314. [Google Scholar] Pérez-Moreno L, Villalpando-Mendiola JJ, Castañeda-Cabrera C, Ramírez-Malagón R. 2009. Sensibilidad in vitro de Sclerotium rolfsii Saccardo, a Los Fungicidas Comúnmente Usados Para su Combate. Revista mexicana de fitopatología. 27:11–17. Spanish. [Google Scholar] Pontin M, Bottini R, Burba JL, Piccoli P. 2015. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochem. 115:152–160. doi:10.1016/j.phytochem.2015.02.003. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Qian M, Dung J. 2017. Efficacy of organic sulfur compounds from garlic/onion on white rot Sclerotia germination. Oregon State University, Corvallis, OR. 97330. [Google Scholar] Rajasekhar L, Sain SK, Divya J. 2016. Evaluation of microbial consortium for plant health management of chick pea. J Appl Biol Pharm Tech. 7:115–121. [Google Scholar] Rivera-Méndez W, Obregón M, Morán-Diez, ME, Hermosa R, Monte E. 2020. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control. 141:104145. doi:10.1016/j.biocontrol.2019.104145. [Crossref] [Web of Science ®], [Google Scholar] Rivera-Méndez W, Zúñiga-Vega C, Brenes-Madriz JA. 2016. Control biológico del hongo Sclerotium cepivorum utilizando Trichoderma asperellum en el cultivo del ajo en Costa Rica. Revista Tecnología en Marcha. 41–50. doi:10.18845/tm.v29i7.2704. Spanish. [Crossref], [Google Scholar] Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A. 2010. Epidemiological analysis and control of Sclerotium cepivorum Berk. and white rot disease in garlic (Allium sativum L.). Bioagro. 22(3):185–192. [Google Scholar] Santos A, García M, Cotes AM, Villamizar L. 2012. Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología. 29(3):150–156. doi:10.1016/j.riam.2011.11.002. Spanish. [Crossref], [Google Scholar] Shahid M, Pandey S, Srivastava M, Kumar V, Singh A, Trivedi S, et al. 2016. Characterization and identification of different strains of Trichoderma species using bio-molecular techniques. J Pure Appl Microbiol. 10(1):769–787. [Google Scholar] Shalaby ME, Ghoniem KE, El-Diehi MA. 2013. Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann of Microbiol. 63(4):1579–1589. doi:10.1007/s13213-013-0621-1. [Crossref] [Web of Science ®], [Google Scholar] Shih H-D, Liu Y-C, Hsu F-L, Mulabagal V, Dodda R, Huang J-W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agri Food Chem. 51(1):95–99. doi:10.1021/jf025879b. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Smolinska U. 2000. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J Phytopathol. 148(6):343–349. doi:10.1046/j.1439-0434.2000.00519.x. [Crossref] [Web of Science ®], [Google Scholar] Thakkar A, Saraf M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot. 48(6):459–474. doi:10.1080/03235408.2014.893638. [Taylor & Francis Online], [Google Scholar] Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ. 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotech Lett. 36(10):2095–2101. doi:10.1007/s10529-014-1583-5. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Ulacio D, Zavaleta-Mejía E, Martínez-Garza A, Pedroza-Sandoval A, México-Texcoco C, Edo de México M. 2006. Strategies for management of Sclerotium cepivorum Berk. in garlic. J Plant Pathol. 88(3):253–261. doi:10.4454/jpp.v88i3.870. [Crossref] [Web of Science ®], [Google Scholar] Urbina-Salazar AR, Inca-Torres AR, Falcón-García G, Carbonero-Aguilar P, Rodríguez-Morgado B, del Campo, JA, et al. 2018. Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium. Waste Biomass Valori. 10 (1): 2915–2923. doi:10.1007/s12649-018-0328-4. [Crossref], [Google Scholar] Uribe Gutierrez LA, Zapata Narvaez JA, Villamizar Rivero LF, Diaz Garcia A, Gomez Alvarez MI, Cotes Prado AM, et al. 2013. Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC-WPRS Bull. ISSN: 1027-3115 [Google Scholar] Utkhede R, Rahe J. 1979. Wet-sieving floatation technique for isolation of sclerotia of Sclerotium cepivorum from muck soil. Phytopathol. 69(295): e297. [Google Scholar] Valadares-Inglis MC, Martins I, da Silva JP, de Mello SCM. 2018. Seleção in vitro de linhagens de Trichoderma para controle da podridão-branca do alho e da cebola’ Boletim de pesquisa e desenvolvimento. Brasília(BRA): Embrapa. Portuguese. [Google Scholar] Vig AP, Rampal G, Thind TS, Arora S. 2009. Bio-protective effects of glucosinolates – a review. LWT Food Sci Technol. 42(10):1561–1572. doi:10.1016/j.lwt.2009.05.023. [Crossref] [Web of Science ®], [Google Scholar] Villalta ON, Wite D, Porter IJ, McLean KL, Stewart A, Hunt J 2012. Integrated Control of Onion White Rot on Spring Onions Using Diallyl Disulphide, Fungicides and Biocontrols. Acta Hortic. 944: 63–71. 944 10.17660/ActaHortic.2012.944.8 [Crossref], [Google Scholar] Zamora E. 2016. El cultivo de la cebolla. Serie guías–producción de hortalizas 34(25): 1–7. Spanish. [Google Scholar] Zewid T, Fininsa C, Sakhuja PK 2007. Management of white rot (Sclerotium cepivorum) of garlic using fungicides in Ethiopia. Crop Prot. 26(6): 856–866. doi:10.1016/j.cropro.2006.08.017. [Crossref] [Web of Science ®], [Google Scholar]Additional informationFundingThe work was supported by the Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) .","PeriodicalId":9468,"journal":{"name":"Canadian Journal of Plant Pathology","volume":"39 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07060661.2023.2262959","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractStromatinia cepivora, the causal agent of white rot, is responsible for 60-80% of economic losses in onion and garlic crops. This work aimed to select biological control agents (BCAs) to control white rot. Ten microorganisms were tested for hyperparasitic activity on S. cepivora sclerotia in garlic (Allium sativum). Bioassays consisted of pots filled with sterile soil and 50 sclerotia in a plastic Tulle bag. Four microorganisms were selected to compare their capability for degrade sclerotia on garlic. Our results showed that increasing degradation happened when Th034, Th035, Th003 and Bs006 were added to the pots containing garlic. Subsequently, three application techniques (seeds, seedlings at transplant, and seeds and transplant) were evaluated. Seven BCAs applied singly and in mixtures were evaluated in semi-field experiments for their ability to reduce white rot symptoms in onion plants in soil inoculated with 300 sclerotia per kilogram. The results indicated that efficacy was dependent on microrganism, mixture, and technique of application. The synergy factor showed that only two treatments have synergistic effects. In both cases, the mixture consisted of a strain of Bacillus and two species of Trichoderma (T. koningiopsis, T. atroviride) applied twice. In most cases, antagonistic interactions among BCAs were observed.Stromatinia cepivora, l’agent causal de la pourriture blanche, est responsable de 60 à 80 % des pertes financières relatives à la culture de l’oignon et de l’ail. Ces travaux visent à sélectionner des agents de lutte biologique (ALB) pour combattre la pourriture blanche. Dix microorganismes ont été testés pour leur activité hyperparasitique envers les sclérotes de S. cepivora chez l’ail (Allium sativum). Des biotests consistaient à placer dans des pots du sol stérile et 50 sclérotes contenus dans des sachets en tulle de plastique. Quatre microorganismes ont été sélectionnés afin de comparer leur capacité à dégrader les sclérotes sur l’ail. Nos résultats ont montré que davantage de dégradation se produisait lorsque Th034, Th035, Th003 et Bs006 étaient ajoutés aux pots contenant l’ail. Subséquemment, trois techniques d’application ont été évaluées (semences, plantules lors de la transplantation et semences et transplantation). Sept ALB appliqués seuls ou combinés ont été évalués au cours d’expériences menées dans des conditions semi-naturelles en vue de déterminer leur capacité à réduire les symptômes de la pourriture blanche chez l’oignon dans un sol inoculé avec 300 sclérotes par kilogramme. Les résultats ont indiqué que l’efficacité dépendait du microorganisme, de la combinaison et de la technique d’application. Le facteur de synergie a démontré que seuls deux traitements ont des effets synergiques. Dans les deux cas, la combinaison consistait en une souche de bacilles et deux espèces de Trichoderma (T. koningiopsis, T. atroviride) appliquées à deux reprises. Dans la plupart des cas, des interactions antagonistes entre les ALB ont été observées.KEYWORDS: antagonismBacillusbiocontrolStromatinia cepivoraTrichodermawhite rotKEYWORDS: MOTS CLÉSAntagonismebacilleslutte biologiquepourriture blancheStromatinia cepivoraTrichodermaDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was carried out with the financial support of the Colombian Corporation for Agricultural Research – AGROSAVIA. The authors thank to the Germplasm Bank of Microorganisms for supplying the biocontrol strains.Conflict of interestThe authors declare that there was no economic or financial interest that could be interpreted as a potential conflict of interest.Availability of data and materialThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.References Abbott WS 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol. 18(2):265–267. doi:10.1093/jee/18.2.265a. [Crossref], [Google Scholar] Abd-Elbaky A, El-Abeid S, Osman N. 2018. Effect of integration between vascular arbuscular mycorrhizal fungi and potassium silicate supplementation on controlling onion white rot. Egypt J Phytopathol. 46(1): 125–142. doi:10.21608/ejp.2018.87774. [Crossref], [Google Scholar] Backhouse D, Stewart, A. 1987. Anatomy and histochemistry of resting and germinating sclerotia of Sclerotium cepivorum. T Brit Mycol Soc. 89(4): 561–567. doi:10.1016/S0007-1536(87)80090-6. [Crossref], [Google Scholar] Barbison, LC. 2014 Analysis of three biological control agents and naturally-occurring fungal colonizers on the survival of sclerotia of Botrytis squamosa, Sclerotinia sclerotiorum and Sclerotium cepivorum [ master’s thesis]. Guelph (ON):University of Guelph. [Google Scholar] Bech L., Busk PK Lange L. 2015. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fung Genomic Biol. 4: 116. [Google Scholar] Bonciu E. 2020. Study regarding the cellular activity in garlic (A. sativum) bulbs affecting by Sclerotium cepivorum. Sci P Series A. Agron. LXIII(1): 186–191. [Google Scholar] CABI (2021). Stromatinia cepivora (white rot of onion and garlic). CAB International; [accessed 2022] Wallingford, UK. https://www.cabi.org/isc/datasheet/49145#toDistributionMaps. [Google Scholar] Castillo N. 2000 Aislamiento, identificación y selección de potenciales hongos antagonistas al hongo Sclerotium cepivorum Berk causante de la pudrición blanca de la cebolla de bulbo (AIIium cepa L.) [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Chien Y-C, Huang C-H 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. null. 156(4): 995–1003. doi:10.1007/s10658-020-01947-5. [Crossref], [Google Scholar] Cimen I, Firing V, Sagir A. 2010. Determination of long-term effects of consecutive effective soil solarization with vesicular arbuscular mycorrhizal (VAM) on white rot disease (Sclerotium cepivorum Berk.) and yield of onion. Res Crop. 11(1): 109–117. [Google Scholar] Clarkson JP, Mead A, Payne T, Whipps JM 2004. Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. null. 53(3): 353–362. doi:10.1111/j.0032-0862.2004.01013.x. [Crossref], [Google Scholar] Clarkson JP, Payne T, Mead A, Whipps JM 2002. Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. null. 51(6): 735–745. doi:10.1046/j.1365-3059.2002.00787.x. [Crossref], [Google Scholar] Coley-Smith JR 1990. White rot disease of Allium: problems of soil-borne diseases in microcosm. null. 39:214–222. 2 10.1111/j.1365-3059.1990.tb02495.x [Crossref], [Google Scholar] Coley-Smith JR, King JE 1969. The production by species of Allium of alkyl sulphides and their effect on germination of sclerotia of Sclerotium cepivorum Berk. Ann Appl Biol. 64(2):289–301. doi:10.1111/j.1744-7348.1969.tb02879.x. [Crossref] [Web of Science ®], [Google Scholar] Cotes AM, Fargetton X, Köhl J, Díaz García A, Gómez Álvarez MI, Grijalba Bernal EP, et al. 2018 Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. 2 Cotes AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria. Spanish. [Crossref], [Google Scholar] Cotes AM, Lepoivre P, Semal J 1996. Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. null. 102(5):497–506. doi:10.1007/bf01877144. [Crossref], [Google Scholar] Cotes Prado AM, Beltrán Acosta CR, Velandia M, Carlos A, Villamizar Rivero LF, Gómez IM, Grijalba Bernal EP, et al. 2011. Trichoderma koningiopsis Th003 alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa. Cotes Prado AM, editor. Bogota (Col):Corporación Colombiana de Investigación Agropecuaria – Corpoica and Universidad de Cordoba, GANACOR. Spanish. [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2002. Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biol Biochem. 34(7):1037–1045. doi:10.1016/S0038-0717(02)00037-8. [Crossref] [Web of Science ®], [Google Scholar] Coventry E, Noble R, Mead A, Whipps JM 2005. Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. null. 111(2):101–112. doi:10.1007/s10658-004-1420-0. [Crossref], [Google Scholar] Crowe F, Hall D. 1980. Soil temperature and moisture effects on sclerotium germination and infection of onion seedlings by Sclerotium cepivorum. Phytopathol. 70(1):74–78. [Crossref] [Web of Science ®], [Google Scholar] Crowe FJ. 2008. White Rot. In: Schwartz HF, Krishna Mohan S, editors. Compendium of Onion and Garlic Diseases and Pests. St. Paul (MN): The American Phytopathological Society; p. 22–26. [Google Scholar] Crowe FJ, Darnell T, Thornton M, Davis M, McGrath D, Koepsell P, et al. 1993. White rot control studies show promise of better future. Onion World. 9: 22–25. [Google Scholar] Díaz-García A, García-Riaño J, Zapata-Narvaez J. 2015. Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Adv Biosci Biotechnol. 6: 302–310. doi:10.4236/abb.2015.64029. [Crossref], [Google Scholar] Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM. 2019. Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants. Heliyon. 5(1): e01168. doi:10.1016/j.heliyon.2019.e01168. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Elshahawy IE, Saied N, Abd-El-Kareem F, Morsy A. 2017. Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Arch Phytopathol Plant Prot. 50(3–4): 150–166. doi:10.1080/03235408.2016.1276423. [Taylor & Francis Online], [Google Scholar] Elshahawy IE, Saied NM 2021. Reduced sclerotial viability of Stromatinia cepivora and control of white rot disease of onion and garlic by means of soil bio-solarization. null. 160(3): 519–540. doi:10.1007/s10658-021-02260-5. [Crossref], [Google Scholar] Elshahawy IE, Saied NM, Abd-El-Kareem F, Morsy AA. 2018. Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. J Plant Pathol. 100(3): 493–503. doi:10.1007/s42161-018-0113-z. [Crossref] [Web of Science ®], [Google Scholar] EPA. 2009. Pesticide Product Label, DADS™ BIOSTIMULANT. US Environmental Protection Agency. 2749–2526. Washington (DC); p. 1–3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/002749-00526-20091125.pdf. [Google Scholar] EPA. 2012. Pesticide Product Label, Quilt Xcel™ US Environmental Protection Agency. 100 1324. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-01324-20120810.pdf. [Google Scholar] EPA. 2013. Pesticide Product Label, Medallion® Fungicide. US Environmental Protection Agency 100-769. Washington (DC); p. 1–33. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/000100-00769-20130506.pdf. [Google Scholar] EPA. 2016. Pesticide Product Label, FD Tebuconazole 3.6F. US Environmental Protection Agency 91232-3. Washington (DC); p. 1–35 3. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/091232-00003-20161215.pdf. [Google Scholar] EPA. 2018. Pesticide Product Label, TIMOREX GOLD. US Environmental Protection Agency. 86182-1. Washington (DC). p. 1–33 2. Available at: https://www3.epa.gov/pesticides/chem_search/ppls/086182-00001-20180531.pdf. [Google Scholar] Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, do Nascimento RP, Bon EPS, et al. 2013. Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Res Int. 2013: 584207. doi:10.1155/2013/584207. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Fuga CAG, Lopes EA, Vieira BS, da Cunha WV. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica. 44(4): 526–531. doi:10.15361/1984-5529.2016v44n4p526-531. [Crossref], [Google Scholar] Galal A-MM. 2006. Induction of systemic acquired resistance in cucumber plant against Cucumber Mosaic Cucumovirus by local Streptomyces strains. Plant Pathol J. 5: 343–349. [Crossref], [Google Scholar] Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al. 2012. Generalized Linear Mixed Models. In: Gbur EE, Stroup WW, McCarter KS, Durham S, Young LJ, Christman M, et al., editors. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. US: American Society of Agronomy. doi:10.2134/2012.generalized-linear-mixed-models.c5; p. 109–197. [Crossref], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathol. 91(7):621–627. doi:10.1094/PHYTO.2001.91.7.621. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathol. 92(9):976–985. doi:10.1094/PHYTO.2002.92.9.976. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Haggag WM, Nofal MA. 2006. Improving the biological control of Botryodiplodia disease on some Annona cultivars using single or multi-bioagents in Egypt. Biol Control. 38(3):341–349. doi:10.1016/j.biocontrol.2006.02.010. [Crossref] [Web of Science ®], [Google Scholar] Haichar FZ, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem. 77:69–80. doi:10.1016/j.soilbio.2014.06.017. [Crossref] [Web of Science ®], [Google Scholar] Han KS, Soo Sang H, Ki Heung H, Jong Tae K, Buyng Ryun K, Chang Kook C, et al. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res in Plant Dis. 19(1):21–24. doi:10.5423/RPD.2013.19.1.021. [Crossref], [Google Scholar] Harper GE. 2001 Aspects of the biology of the sclerotia of Sclerotium cepivorum [ dissertation]. Canterbury (NZL): Lincoln University [Google Scholar] Huang J-W, Shih H-D, Huang H-C, Chung W-C. 2007. Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can J Plant Pathol. 29(3):261–267. doi:10.1080/07060660709507468. [Taylor & Francis Online] [Web of Science ®], [Google Scholar] Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, et al. 2016. Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa. Front Microbiol. 7:1657. doi:10.3389/fmicb.2016.01657. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA 2020. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep. 10(1):6857. doi:10.1038/s41598-020-63689-y. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Jaimes Suárez YY, Moreno Velandia CA, Cotes Prado AM. 2009. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta biol.Colomb. 14(3):10. Spanish. [Google Scholar] Kashyap PL, Rai P, Srivastava AK, Kumar S 2017. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol. 33(8):155. doi:10.1007/s11274-017-2319-1. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Katan J. 2000. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot. 19(8):725–731. doi:10.1016/S0261-2194(00)00096-X. [Crossref] [Web of Science ®], [Google Scholar] Kaur J, Munshi GD, Singh RS, Koch E. 2005. Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. J Phytopathol. 153(5):274–279. doi:10.1111/j.1439-0434.2005.00969.x. [Crossref] [Web of Science ®], [Google Scholar] Kim H, Kim HT, Min YG. 2015. Control activities of fungicides against garlic white rot caused by Sclerotium cepivorum. Korean J Pesticide Sci. 19(1):64–70. doi:10.7585/kjps.2015.19.1.64. [Crossref], [Google Scholar] Knudson C, Geyer CJ, Benson S. 2012. R [software]. v3.5.1. Package ‘glmm’. Vienna: R Foundation for Statistical Computing. [accessed 2021 Feb 2]. [Google Scholar] Lee YH, Kim ES, Heo SJ, Youn HR, Han JH, Kim KS, et al. 2018. C-1 : Bacillus siamensis H30-3 has antifungal activities against phytopathogenic fungi. Mycological Society News, 30(1):94–94. [Google Scholar] Leta A, Selvaraj T, Ambo P. 2013. Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol. 4(1):159. doi:10.4172/2157-7471.1000159 [Crossref], [Google Scholar] Levy Y, Benderly M, Cohen Y, Gisi U, Bassand D. 1986. The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull. 16(4): 651–657. doi:10.1111/j.1365-2338.1986.tb00338.x. [Crossref], [Google Scholar] Mahady GB, Matsuura H, Pendland SL. 2001. Allixin, a phytoalexin from garlic, inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol. 96:3454. doi:10.1111/j.1572-0241.2001.05351.x. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mahdizadehnaraghi R, Heydari A, Zamanizadeh HR, Rezaee S, Nikan J. 2015. Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. J Plant Prot Res. 55(2):136–141. doi:10.1515/jppr-2015-0017. [Crossref], [Google Scholar] McLean KL, Swaminathan J, Stewart A 2001. Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biol Biochem. 33(2):137–143. doi:10.1016/S0038-0717(00)00119-X. [Crossref] [Web of Science ®], [Google Scholar] Mesa P, García C, Cotes AM. 2017. En búsqueda de una alternativa de manejo del camanduleo de la papa ocasionada por Spongospora subterranea. Revista Colombiana de Ciencias Hortícolas. 11, 378–386. doi:10.17584/rcch.2017v11i2.6150. Spanish. [Crossref], [Google Scholar] Mesa Quijano EP. 2016. Efecto de microorganismos biocontroladores y aditivos orgánicos sobre el camanduleo de la papa ocasionada por Spongospora subterranea f. sp. subterranea. [ master’s thesis]. Bogota (Col): Universidad Nacional de Colombia-Sede Bogotá. Spanish [Google Scholar] Mesterházy A, Tóth B, Varga M, Bartók T, Szabó-Hevér A, Farády L, et al. 2011. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins. 3(11):1453–1483. doi:10.3390/toxins3111453. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Metcalf DA. 1997. Biological control of Sclerotium cepivorum Berk.(onion white root rot) using Trichoderma koningii Oudem. [ dissertation]. Hobart (AU): University of Tasmania [Google Scholar] Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front Plant Sci. 12:756368. doi: 10.3389/fpls.2021.756368. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Mohd-Yusoff J, Alias Z, Simarani K. 2016. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl Biochem Microbiol. 52(3):256–262. doi:10.1134/S0003683816030133. [Crossref] [Web of Science ®], [Google Scholar] Moreno-Velandia CA, Izquierdo-García LF, Ongena M, Kloepper JW, Cotes AM. 2019. Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil. 435(1): 39–55. doi:10.1007/s11104-018-3866-4. [Crossref] [Web of Science ®], [Google Scholar] Moreno C, Kloepper J, Ongena M, Cotes AM. 2014. Biotic factors involved in biological control activity of Bacillus amyloliquefaciens (Bs006) against Fusarium oxysporum in Cape gooseberry (Physalis peruviana). IOBC-WPRS Bull. 115:129–136. [Google Scholar] Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, González C, Rodriguez F, Restrepo S, Cotes AM, et al. 2009. Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol. 74(2):111–120. doi:10.1016/j.pmpp.2009.10.001. [Crossref] [Web of Science ®], [Google Scholar] Nawrocki A. 2016. Effectiveness of the biological control of garlic (Allium sativum L.). Acta Hortic Regiotec. 19(1):15–17. [Crossref], [Google Scholar] Palmieri D, Vitullo D, De Curtis F, Lima G. 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil. 412(1):425–439. doi:10.1007/s11104-016-3080-1. [Crossref] [Web of Science ®], [Google Scholar] Paris A. 2000. Aislamiento, identificación y selección de bacterias y levaduras biocontroladores del fitopatógeno Sclerotium cepivorum Berk., causante de la pudrición blanca en cebolla de bulbo Allium cepa Linneo. [ master’s thesis]. Tunja (Col):Universidad Pedagógica y Tecnológica de Colombia. Spanish [Google Scholar] Paris A, Cotes AM. 2002. Biological control of Sclerotium cepivorum in onion with a yeast and bacteria. IOBC Bull. 25(10):311–314. [Google Scholar] Pérez-Moreno L, Villalpando-Mendiola JJ, Castañeda-Cabrera C, Ramírez-Malagón R. 2009. Sensibilidad in vitro de Sclerotium rolfsii Saccardo, a Los Fungicidas Comúnmente Usados Para su Combate. Revista mexicana de fitopatología. 27:11–17. Spanish. [Google Scholar] Pontin M, Bottini R, Burba JL, Piccoli P. 2015. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochem. 115:152–160. doi:10.1016/j.phytochem.2015.02.003. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Qian M, Dung J. 2017. Efficacy of organic sulfur compounds from garlic/onion on white rot Sclerotia germination. Oregon State University, Corvallis, OR. 97330. [Google Scholar] Rajasekhar L, Sain SK, Divya J. 2016. Evaluation of microbial consortium for plant health management of chick pea. J Appl Biol Pharm Tech. 7:115–121. [Google Scholar] Rivera-Méndez W, Obregón M, Morán-Diez, ME, Hermosa R, Monte E. 2020. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control. 141:104145. doi:10.1016/j.biocontrol.2019.104145. [Crossref] [Web of Science ®], [Google Scholar] Rivera-Méndez W, Zúñiga-Vega C, Brenes-Madriz JA. 2016. Control biológico del hongo Sclerotium cepivorum utilizando Trichoderma asperellum en el cultivo del ajo en Costa Rica. Revista Tecnología en Marcha. 41–50. doi:10.18845/tm.v29i7.2704. Spanish. [Crossref], [Google Scholar] Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A. 2010. Epidemiological analysis and control of Sclerotium cepivorum Berk. and white rot disease in garlic (Allium sativum L.). Bioagro. 22(3):185–192. [Google Scholar] Santos A, García M, Cotes AM, Villamizar L. 2012. Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología. 29(3):150–156. doi:10.1016/j.riam.2011.11.002. Spanish. [Crossref], [Google Scholar] Shahid M, Pandey S, Srivastava M, Kumar V, Singh A, Trivedi S, et al. 2016. Characterization and identification of different strains of Trichoderma species using bio-molecular techniques. J Pure Appl Microbiol. 10(1):769–787. [Google Scholar] Shalaby ME, Ghoniem KE, El-Diehi MA. 2013. Biological and fungicidal antagonism of Sclerotium cepivorum for controlling onion white rot disease. Ann of Microbiol. 63(4):1579–1589. doi:10.1007/s13213-013-0621-1. [Crossref] [Web of Science ®], [Google Scholar] Shih H-D, Liu Y-C, Hsu F-L, Mulabagal V, Dodda R, Huang J-W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agri Food Chem. 51(1):95–99. doi:10.1021/jf025879b. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Smolinska U. 2000. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J Phytopathol. 148(6):343–349. doi:10.1046/j.1439-0434.2000.00519.x. [Crossref] [Web of Science ®], [Google Scholar] Thakkar A, Saraf M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot. 48(6):459–474. doi:10.1080/03235408.2014.893638. [Taylor & Francis Online], [Google Scholar] Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ. 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotech Lett. 36(10):2095–2101. doi:10.1007/s10529-014-1583-5. [Crossref] [PubMed] [Web of Science ®], [Google Scholar] Ulacio D, Zavaleta-Mejía E, Martínez-Garza A, Pedroza-Sandoval A, México-Texcoco C, Edo de México M. 2006. Strategies for management of Sclerotium cepivorum Berk. in garlic. J Plant Pathol. 88(3):253–261. doi:10.4454/jpp.v88i3.870. [Crossref] [Web of Science ®], [Google Scholar] Urbina-Salazar AR, Inca-Torres AR, Falcón-García G, Carbonero-Aguilar P, Rodríguez-Morgado B, del Campo, JA, et al. 2018. Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium. Waste Biomass Valori. 10 (1): 2915–2923. doi:10.1007/s12649-018-0328-4. [Crossref], [Google Scholar] Uribe Gutierrez LA, Zapata Narvaez JA, Villamizar Rivero LF, Diaz Garcia A, Gomez Alvarez MI, Cotes Prado AM, et al. 2013. Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC-WPRS Bull. ISSN: 1027-3115 [Google Scholar] Utkhede R, Rahe J. 1979. Wet-sieving floatation technique for isolation of sclerotia of Sclerotium cepivorum from muck soil. Phytopathol. 69(295): e297. [Google Scholar] Valadares-Inglis MC, Martins I, da Silva JP, de Mello SCM. 2018. Seleção in vitro de linhagens de Trichoderma para controle da podridão-branca do alho e da cebola’ Boletim de pesquisa e desenvolvimento. Brasília(BRA): Embrapa. Portuguese. [Google Scholar] Vig AP, Rampal G, Thind TS, Arora S. 2009. Bio-protective effects of glucosinolates – a review. LWT Food Sci Technol. 42(10):1561–1572. doi:10.1016/j.lwt.2009.05.023. [Crossref] [Web of Science ®], [Google Scholar] Villalta ON, Wite D, Porter IJ, McLean KL, Stewart A, Hunt J 2012. Integrated Control of Onion White Rot on Spring Onions Using Diallyl Disulphide, Fungicides and Biocontrols. Acta Hortic. 944: 63–71. 944 10.17660/ActaHortic.2012.944.8 [Crossref], [Google Scholar] Zamora E. 2016. El cultivo de la cebolla. Serie guías–producción de hortalizas 34(25): 1–7. Spanish. [Google Scholar] Zewid T, Fininsa C, Sakhuja PK 2007. Management of white rot (Sclerotium cepivorum) of garlic using fungicides in Ethiopia. Crop Prot. 26(6): 856–866. doi:10.1016/j.cropro.2006.08.017. [Crossref] [Web of Science ®], [Google Scholar]Additional informationFundingThe work was supported by the Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) .
期刊介绍:
Canadian Journal of Plant Pathology is an international journal which publishes the results of scientific research and other information relevant to the discipline of plant pathology as review papers, research articles, notes and disease reports. Papers may be submitted in English or French and are subject to peer review. Research articles and notes include original research that contributes to the science of plant pathology or to the practice of plant pathology, including the diagnosis, estimation, prevention, and control of plant diseases. Notes are generally shorter in length and include more concise research results. Disease reports are brief, previously unpublished accounts of diseases occurring on a new host or geographic region. Review papers include mini-reviews, descriptions of emerging technologies, and full reviews on a topic of interest to readers, including symposium papers. These papers will be highlighted in each issue of the journal and require prior discussion with the Editor-in-Chief prior to submission.