S. Stoyanov, D. Petring, F. Piedboeuf, M. Lopes, F. Schneider
{"title":"Numerical and experimental investigation of the melt removal mechanism and burr formation during laser cutting of metals","authors":"S. Stoyanov, D. Petring, F. Piedboeuf, M. Lopes, F. Schneider","doi":"10.2351/7.0001182","DOIUrl":null,"url":null,"abstract":"During laser fusion cutting, burr forms when the molten metal does not sufficiently exit the interaction zone. When it forms on the lower edge of the cut flank, burr becomes a factor limiting quality. Previous research has shown that a temporally regular and spatially localized melt flow can prevent the formation of burr. However, the high dynamics of the subprocesses involved can cause intrinsic instabilities that disrupt the flow and reduce the efficiency of the melt ejection. This paper presents a study on the correlation between process parameters, melt flow properties, and burr formation. It includes an experimental observation of the melt-flow dynamics using high-speed videography. In addition, a Computational Fluid Dynamics model was set up to examine fundamental flow properties, some of which are not observable experimentally. The dependency of the burr formation on the liquid Weber and Reynolds numbers is analyzed, and it is demonstrated how the magnitude and allocation of vapor pressure gradients in the kerf decisively affect melt ejection and burr formation. Additionally, a previously unknown melt ejection regime is identified in the thick section range, which occurs at feed rates close to the maximum cutting speed under specific high-power process conditions. This regime is characterized by a significantly increased process efficiency that could open up a new high-speed process window.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During laser fusion cutting, burr forms when the molten metal does not sufficiently exit the interaction zone. When it forms on the lower edge of the cut flank, burr becomes a factor limiting quality. Previous research has shown that a temporally regular and spatially localized melt flow can prevent the formation of burr. However, the high dynamics of the subprocesses involved can cause intrinsic instabilities that disrupt the flow and reduce the efficiency of the melt ejection. This paper presents a study on the correlation between process parameters, melt flow properties, and burr formation. It includes an experimental observation of the melt-flow dynamics using high-speed videography. In addition, a Computational Fluid Dynamics model was set up to examine fundamental flow properties, some of which are not observable experimentally. The dependency of the burr formation on the liquid Weber and Reynolds numbers is analyzed, and it is demonstrated how the magnitude and allocation of vapor pressure gradients in the kerf decisively affect melt ejection and burr formation. Additionally, a previously unknown melt ejection regime is identified in the thick section range, which occurs at feed rates close to the maximum cutting speed under specific high-power process conditions. This regime is characterized by a significantly increased process efficiency that could open up a new high-speed process window.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.