Parameterized Algorithms for Fixed-Order Book Drawing with Few Crossings Per Edge

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jingui Huang, Jie Chen, Yunlong Liu, Guang Xiao, Jianxin Wang
{"title":"Parameterized Algorithms for Fixed-Order Book Drawing with Few Crossings Per Edge","authors":"Jingui Huang, Jie Chen, Yunlong Liu, Guang Xiao, Jianxin Wang","doi":"10.1142/s0129054123500168","DOIUrl":null,"url":null,"abstract":"Given an [Formula: see text]-vertex graph [Formula: see text] with a fixed linear ordering of [Formula: see text] and two integers [Formula: see text], the problem fixed-order book drawing with few crossings per edge asks whether or not [Formula: see text] admits a [Formula: see text]-page book drawing where the maximum number of crossings per edge can be upper bounded by the number [Formula: see text]. This problem was posed as an open question by Bhore et al. (J. Graph Algorithms Appl. 2020). In this paper, we study this problem from the viewpoint of parameterized complexity, in particular, we develop fixed-parameter tractable algorithms for it. More specifically, we show that this problem parameterized by both the bound number [Formula: see text] of crossings per edge and the vertex cover number [Formula: see text] of the input graph admits an algorithm with running time in [Formula: see text], and this problem parameterized by both the bound number [Formula: see text] of crossings per edge and the pathwidth [Formula: see text] of the vertex ordering admits an algorithm with running time in [Formula: see text]. Our results provide a specific answer to Bhore et al.’s question.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"221 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054123500168","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an [Formula: see text]-vertex graph [Formula: see text] with a fixed linear ordering of [Formula: see text] and two integers [Formula: see text], the problem fixed-order book drawing with few crossings per edge asks whether or not [Formula: see text] admits a [Formula: see text]-page book drawing where the maximum number of crossings per edge can be upper bounded by the number [Formula: see text]. This problem was posed as an open question by Bhore et al. (J. Graph Algorithms Appl. 2020). In this paper, we study this problem from the viewpoint of parameterized complexity, in particular, we develop fixed-parameter tractable algorithms for it. More specifically, we show that this problem parameterized by both the bound number [Formula: see text] of crossings per edge and the vertex cover number [Formula: see text] of the input graph admits an algorithm with running time in [Formula: see text], and this problem parameterized by both the bound number [Formula: see text] of crossings per edge and the pathwidth [Formula: see text] of the vertex ordering admits an algorithm with running time in [Formula: see text]. Our results provide a specific answer to Bhore et al.’s question.
单边少交叉定序画册的参数化算法
给定一个[公式:见文]-顶点图[公式:见文],有一个固定的线性顺序[公式:见文]和两个整数[公式:见文],问题的固定顺序画册,每条边的交叉点很少,问[公式:见文]是否允许一个[公式:见文]页画册,其中每条边的最大交叉点数可以由数字[公式:见文]的上限。这个问题是由bore等人(J. Graph Algorithms appll . 2020)提出的开放性问题。本文从参数化复杂性的角度对这一问题进行了研究,特别提出了固定参数可处理算法。更具体地说,我们证明了以输入图的每条边的交叉数[公式:见文]和顶点覆盖数[公式:见文]为参数化的这个问题承认一个运行时间为[公式:见文]的算法,并且以每条边的交叉数[公式:见文]和顶点排序的路径宽度[公式:见文]为参数化的这个问题承认一个运行时间为[公式:见文]的算法。我们的研究结果为Bhore等人的问题提供了一个具体的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信