{"title":"An Improved Approach for Implementing Dynamic Mode Decomposition with Control","authors":"Gyurhan Nedzhibov","doi":"10.3390/computation11100201","DOIUrl":null,"url":null,"abstract":"Dynamic Mode Decomposition with Control is a powerful technique for analyzing and modeling complex dynamical systems under the influence of external control inputs. In this paper, we propose a novel approach to implement this technique that offers computational advantages over the existing method. The proposed scheme uses singular value decomposition of a lower order matrix and requires fewer matrix multiplications when determining corresponding approximation matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests: accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its versatility and efficacy across different dynamical systems.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"148 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic Mode Decomposition with Control is a powerful technique for analyzing and modeling complex dynamical systems under the influence of external control inputs. In this paper, we propose a novel approach to implement this technique that offers computational advantages over the existing method. The proposed scheme uses singular value decomposition of a lower order matrix and requires fewer matrix multiplications when determining corresponding approximation matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests: accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its versatility and efficacy across different dynamical systems.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.