Athanasios Kallimanis, Ioannis P. Kokkoris, Ioannis Bazos, Thomas Raus, Arne Strid, Panayotis Dimopoulos
{"title":"What Insight Does the Alien Plant Species Richness in Greece Offer for the Different Invasion Biology Hypotheses?","authors":"Athanasios Kallimanis, Ioannis P. Kokkoris, Ioannis Bazos, Thomas Raus, Arne Strid, Panayotis Dimopoulos","doi":"10.3390/d15101067","DOIUrl":null,"url":null,"abstract":"Biological invasions are one of the main threats to biodiversity, but they also offer insights on different ecological processes, as highlighted by the hypotheses posited to explain the phenomenon. We explore the relative importance of different hypotheses using biotic (native diversity) and abiotic factors (climate and landscape configuration) as proxies driving the spatial pattern of alien plant biodiversity in Greece. The strongest predictor of alien species richness is native species richness. Landscape heterogeneity boosts this relationship, but native and alien species prefer different conditions. Landscape composition and configuration explain more of the variance of alien diversity than of native diversity, with native diversity increasing at more naturally vegetated areas and alien diversity at agricultural lands. Climate is associated more strongly with native diversity than with alien diversity, with native diversity increasing in colder regions and alien diversity in warmer regions. The transportation network was associated with higher alien species richness but not with native species richness, highlighting the importance of propagule/colonization pressure. These differences might indicate that aliens occupy part of the niche space that is not preferred by the natives and thus allow us to speculate on the role of limiting similarity as a driving force.","PeriodicalId":56006,"journal":{"name":"Diversity-Basel","volume":"66 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/d15101067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Biological invasions are one of the main threats to biodiversity, but they also offer insights on different ecological processes, as highlighted by the hypotheses posited to explain the phenomenon. We explore the relative importance of different hypotheses using biotic (native diversity) and abiotic factors (climate and landscape configuration) as proxies driving the spatial pattern of alien plant biodiversity in Greece. The strongest predictor of alien species richness is native species richness. Landscape heterogeneity boosts this relationship, but native and alien species prefer different conditions. Landscape composition and configuration explain more of the variance of alien diversity than of native diversity, with native diversity increasing at more naturally vegetated areas and alien diversity at agricultural lands. Climate is associated more strongly with native diversity than with alien diversity, with native diversity increasing in colder regions and alien diversity in warmer regions. The transportation network was associated with higher alien species richness but not with native species richness, highlighting the importance of propagule/colonization pressure. These differences might indicate that aliens occupy part of the niche space that is not preferred by the natives and thus allow us to speculate on the role of limiting similarity as a driving force.
期刊介绍:
Diversity (ISSN 1424-2818) is an international and interdisciplinary journal of science concerning diversity concept and application, diversity assessment and diversity preservation. It is focused on organismic and molecular diversity. It publishes reviews, regular research papers and short notes in the regular issues. Related news and announcements are also published. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. Full experimental details must be provided so that the results can be reproduced.