{"title":"A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection","authors":"Ayman H. Tanira, Wesam M. Ashour","doi":"10.5815/ijisa.2023.05.04","DOIUrl":null,"url":null,"abstract":"The detection of outliers in text documents is a highly challenging task, primarily due to the unstructured nature of documents and the curse of dimensionality. Text document outliers refer to text data that deviates from the text found in other documents belonging to the same category. Mining text document outliers has wide applications in various domains, including spam email identification, digital libraries, medical archives, enhancing the performance of web search engines, and cleaning corpora used in document classification. To address the issue of dimensionality, it is crucial to employ feature selection techniques that reduce the large number of features without compromising their representativeness of the domain. In this paper, we propose a hybrid density-based approach that incorporates mutual information for text document outlier detection. The proposed approach utilizes normalized mutual information to identify the most distinct features that characterize the target domain. Subsequently, we customize the well-known density-based local outlier factor algorithm to suit text document datasets. To evaluate the effectiveness of the proposed approach, we conduct experiments on synthetic and real datasets comprising twelve high-dimensional datasets. The results demonstrate that the proposed approach consistently outperforms conventional methods, achieving an average improvement of 5.73% in terms of the AUC metric. These findings highlight the remarkable enhancements achieved by leveraging normalized mutual information in conjunction with a density-based algorithm, particularly in high-dimensional datasets.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2023.05.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of outliers in text documents is a highly challenging task, primarily due to the unstructured nature of documents and the curse of dimensionality. Text document outliers refer to text data that deviates from the text found in other documents belonging to the same category. Mining text document outliers has wide applications in various domains, including spam email identification, digital libraries, medical archives, enhancing the performance of web search engines, and cleaning corpora used in document classification. To address the issue of dimensionality, it is crucial to employ feature selection techniques that reduce the large number of features without compromising their representativeness of the domain. In this paper, we propose a hybrid density-based approach that incorporates mutual information for text document outlier detection. The proposed approach utilizes normalized mutual information to identify the most distinct features that characterize the target domain. Subsequently, we customize the well-known density-based local outlier factor algorithm to suit text document datasets. To evaluate the effectiveness of the proposed approach, we conduct experiments on synthetic and real datasets comprising twelve high-dimensional datasets. The results demonstrate that the proposed approach consistently outperforms conventional methods, achieving an average improvement of 5.73% in terms of the AUC metric. These findings highlight the remarkable enhancements achieved by leveraging normalized mutual information in conjunction with a density-based algorithm, particularly in high-dimensional datasets.