A WEIGHTED COMPACTNESS CRITERION FOR COMMUTATORS ASSOCIATED WITH GENERALIZED CALDERÓN–ZYGMUND OPERATORS

IF 0.9 4区 数学 Q2 MATHEMATICS
Li Yang, Qianjun He, Pengtao Li, Kai Zhao
{"title":"A WEIGHTED COMPACTNESS CRITERION FOR COMMUTATORS ASSOCIATED WITH GENERALIZED CALDERÓN–ZYGMUND OPERATORS","authors":"Li Yang, Qianjun He, Pengtao Li, Kai Zhao","doi":"10.1216/jie.2023.35.235","DOIUrl":null,"url":null,"abstract":"Let T be a bounded operator on Lp(ℝn). Under the assumption that the kernel of T satisfies some Hörmander-type estimates, we obtain a boundedness criterion for the multilinear commutators Tb→ on the weighted Lebesgue spaces Lp(ω) with b→∈BMO(ℝn) and ω belonging to the Muckenhoupt weight class Ap∕m′. Further, for b→∈CMO(ℝn), the vanishing mean oscillation space, a criterion of Lp-weighted compactness of Tb→ is established. As applications, the weighted Lp-boundedness and Lp-compactness criteria can be applied to the 𝜃-type Calderón–Zygmund operator and its commutators.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/jie.2023.35.235","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let T be a bounded operator on Lp(ℝn). Under the assumption that the kernel of T satisfies some Hörmander-type estimates, we obtain a boundedness criterion for the multilinear commutators Tb→ on the weighted Lebesgue spaces Lp(ω) with b→∈BMO(ℝn) and ω belonging to the Muckenhoupt weight class Ap∕m′. Further, for b→∈CMO(ℝn), the vanishing mean oscillation space, a criterion of Lp-weighted compactness of Tb→ is established. As applications, the weighted Lp-boundedness and Lp-compactness criteria can be applied to the 𝜃-type Calderón–Zygmund operator and its commutators.
与广义calderÓn-zygmund算子相关的换向子的加权紧性准则
设T是Lp(n)上的一个有界算子。在T的核满足Hörmander-type估计的假设下,我们得到了多重线性交换子Tb→在加权Lebesgue空间Lp(ω)上的有界性判据,其中b→∈BMO(n), ω属于Muckenhoupt权类Ap∕m’。进一步,对于消失的平均振荡空间b→∈CMO(n),建立了Tb→的一个lp加权紧性判据。作为应用,加权的lp有界性和lp紧性准则可应用于𝜃-type Calderón-Zygmund算子及其换向子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integral Equations and Applications
Journal of Integral Equations and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications. The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field. The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信