{"title":"Synthesis of NaYF<sub>4</sub>:Yb<sup>3+</sup>, Tm<sup>3+</sup> Nanocrystals Via the Thermal Decomposition Method Using Refined Sunflower Oil","authors":"L. Smelkovs, V. Viksna, J. Teterovskis, J. Grube","doi":"10.2478/lpts-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, up-conversion luminescence nanoparticles have attracted significant attention from researchers in fields such as analytical chemistry (for example qualitative and quantitative analysis of metal and non-metal ions) and biomedicine (cancer imaging, drug delivery, treatment, etc.) due to their high rate of emission efficiency, easy surface functionalization, great chemical and thermal and photostability and other favorable properties. NaYF 4 in particular has attracted interest of researchers as a host material due to its low phonon energy, thus increasing the efficiency of emission. In this study, the synthesis of NaYF 4 :Yb 3+ ,Tm 3+ nanocrystals using the hydrothermal method was successfully carried out. Refined sunflower oil containing oleic acid was used as a solvent instead of analytical grade oleic acid and octadecene-1, reducing the cost of the synthesis. Using semi-quantitative XRD measurement analysis, it was determined that 25.3 % hexagonal β-NaYF 4 :Yb 3+ ,Tm 3+ as well as 23.8 % cubic α-NaYF 4 nanocrystal crystalline phases were found in the synthesized sample. The sample showed mainly luminescent characteristics typical of hexagonal NaYF 4 :Yb 3+ ,Tm 3+ lattice nanoparticles.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"2 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In recent years, up-conversion luminescence nanoparticles have attracted significant attention from researchers in fields such as analytical chemistry (for example qualitative and quantitative analysis of metal and non-metal ions) and biomedicine (cancer imaging, drug delivery, treatment, etc.) due to their high rate of emission efficiency, easy surface functionalization, great chemical and thermal and photostability and other favorable properties. NaYF 4 in particular has attracted interest of researchers as a host material due to its low phonon energy, thus increasing the efficiency of emission. In this study, the synthesis of NaYF 4 :Yb 3+ ,Tm 3+ nanocrystals using the hydrothermal method was successfully carried out. Refined sunflower oil containing oleic acid was used as a solvent instead of analytical grade oleic acid and octadecene-1, reducing the cost of the synthesis. Using semi-quantitative XRD measurement analysis, it was determined that 25.3 % hexagonal β-NaYF 4 :Yb 3+ ,Tm 3+ as well as 23.8 % cubic α-NaYF 4 nanocrystal crystalline phases were found in the synthesized sample. The sample showed mainly luminescent characteristics typical of hexagonal NaYF 4 :Yb 3+ ,Tm 3+ lattice nanoparticles.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.