Artificial intelligence and validity

Q2 Social Sciences
Tarek Azzam
{"title":"Artificial intelligence and validity","authors":"Tarek Azzam","doi":"10.1002/ev.20565","DOIUrl":null,"url":null,"abstract":"Abstract This article explores the interaction between artificial intelligence (AI) and validity and identifies areas where AI can help build validity arguments, and where AI might not be ready to contribute to our work in establishing validity. The validity of claims made in an evaluation is critical to the field, since it highlights the strengths and limitations of findings and can contribute to the utilization of the evaluation. Within this article, validity will be discussed within two broad categories: quantitative validity and qualitative trustworthiness. Within these categories, there are multiple types of validity, including internal validity, measurement validity, establishing trustworthiness, and credibility, to name a few. Each validity type will be discussed within the context of AI, examining if and how AI can be leveraged (or not) to help establish a specific validity type, or where it might not be possible for AI (in its current form) to contribute to the development of a validity argument. Multiple examples will be provided throughout the article to highlight the concepts introduced.","PeriodicalId":35250,"journal":{"name":"New Directions for Evaluation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Directions for Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ev.20565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This article explores the interaction between artificial intelligence (AI) and validity and identifies areas where AI can help build validity arguments, and where AI might not be ready to contribute to our work in establishing validity. The validity of claims made in an evaluation is critical to the field, since it highlights the strengths and limitations of findings and can contribute to the utilization of the evaluation. Within this article, validity will be discussed within two broad categories: quantitative validity and qualitative trustworthiness. Within these categories, there are multiple types of validity, including internal validity, measurement validity, establishing trustworthiness, and credibility, to name a few. Each validity type will be discussed within the context of AI, examining if and how AI can be leveraged (or not) to help establish a specific validity type, or where it might not be possible for AI (in its current form) to contribute to the development of a validity argument. Multiple examples will be provided throughout the article to highlight the concepts introduced.
人工智能与有效性
本文探讨了人工智能(AI)与有效性之间的相互作用,并确定了AI可以帮助建立有效性论证的领域,以及AI可能尚未准备好为我们建立有效性的工作做出贡献的领域。评价中提出的主张的有效性对该领域至关重要,因为它突出了调查结果的优点和局限性,并有助于评价的利用。在本文中,效度将分为两大类进行讨论:定量效度和定性可信度。在这些类别中,有多种类型的效度,包括内部效度,测量效度,建立可信度和可信度,仅举几例。每种有效性类型都将在人工智能的背景下进行讨论,检查人工智能是否以及如何利用(或不利用)来帮助建立特定的有效性类型,或者人工智能(以其当前形式)可能无法为有效性论证的发展做出贡献。本文将提供多个示例来突出介绍的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Directions for Evaluation
New Directions for Evaluation Social Sciences-Education
CiteScore
2.70
自引率
0.00%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信