Improving Classification Accuracy of Hyperspectral Image Using Convolutional Neural Networks

Mahsa Tekyeh-Nejad, Ata Allah Ebrahimzadeh, Maliheh Ahmadi
{"title":"Improving Classification Accuracy of Hyperspectral Image Using Convolutional Neural Networks","authors":"Mahsa Tekyeh-Nejad, Ata Allah Ebrahimzadeh, Maliheh Ahmadi","doi":"10.61186/jgit.11.1.59","DOIUrl":null,"url":null,"abstract":"Hyperspectral image classification is a crucial aspect of remote sensing image analysis. Deep learning methods have been successfully used to classify remote sensing data. In recent years, convolutional neural networks (CNNs) have been significantly used in hyperspectral image classification, which has tried to overcome the computational and processing challenges of hyperspectral data. By increasing the number of parameters and layers of convolutional neural networks, their efficiency in solving complex problems decreases. For this reason, in this article, a new architecture of convolutional neural networks has been introduced, this network has a good performance and reduces the computing time.","PeriodicalId":486416,"journal":{"name":"مهندسی فناوری اطلاعات مکانی","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"مهندسی فناوری اطلاعات مکانی","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/jgit.11.1.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral image classification is a crucial aspect of remote sensing image analysis. Deep learning methods have been successfully used to classify remote sensing data. In recent years, convolutional neural networks (CNNs) have been significantly used in hyperspectral image classification, which has tried to overcome the computational and processing challenges of hyperspectral data. By increasing the number of parameters and layers of convolutional neural networks, their efficiency in solving complex problems decreases. For this reason, in this article, a new architecture of convolutional neural networks has been introduced, this network has a good performance and reduces the computing time.
利用卷积神经网络提高高光谱图像分类精度
高光谱图像分类是遥感图像分析的一个重要方面。深度学习方法已被成功地用于遥感数据分类。近年来,卷积神经网络(cnn)在高光谱图像分类中得到了广泛的应用,它试图克服高光谱数据在计算和处理方面的挑战。随着卷积神经网络参数和层数的增加,其解决复杂问题的效率会降低。为此,本文引入了一种新的卷积神经网络架构,该网络具有良好的性能并减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信