Style Transfer Technology of Batik Pattern Based on Deep Learning

Q3 Computer Science
Jing Zhang null, Yan Jiang
{"title":"Style Transfer Technology of Batik Pattern Based on Deep Learning","authors":"Jing Zhang null, Yan Jiang","doi":"10.3993/jfbim02171","DOIUrl":null,"url":null,"abstract":"AI painting has recently come into public view, improving the efficiency of users’ creations. At present, the research and application of popular products such as characters and landscapes are more, but the research of Miao batik patterns is lacking. Therefore, this paper studies the style transfer of batik patterns from two aspects. First, a local style transfer model of batik patterns with enhanced edges is proposed. The loss function is composed of local content loss, local style loss and Laplacian loss, and the generated images have good performance in detail texture and color space. The other is to use the existing model in the AI painting tool Stable Diffusion for style transfer of batik patterns. It performs well in running time and memory occupation, but the generated image cannot inherit the style and content images well in color and detail.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fiber Bioengineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3993/jfbim02171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

AI painting has recently come into public view, improving the efficiency of users’ creations. At present, the research and application of popular products such as characters and landscapes are more, but the research of Miao batik patterns is lacking. Therefore, this paper studies the style transfer of batik patterns from two aspects. First, a local style transfer model of batik patterns with enhanced edges is proposed. The loss function is composed of local content loss, local style loss and Laplacian loss, and the generated images have good performance in detail texture and color space. The other is to use the existing model in the AI painting tool Stable Diffusion for style transfer of batik patterns. It performs well in running time and memory occupation, but the generated image cannot inherit the style and content images well in color and detail.
基于深度学习的蜡染图案风格迁移技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fiber Bioengineering and Informatics
Journal of Fiber Bioengineering and Informatics Materials Science-Materials Science (all)
CiteScore
2.40
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信