{"title":"Calculation of photon absorbed dose kernel in a homogeneous water phantom by Monte Carlo Geant4 toolkit","authors":"","doi":"10.47176/ijpr.23.1.81563","DOIUrl":null,"url":null,"abstract":"Nowadays, convolution/superposition(C/S) is used to calculate absorbed dose distribution by using the absorbed dose kernel(ADK). ADK describes the absorbed dose distribution per number of interaction at a small volume around the point of photon interaction. The purpose of this study is to calculate ADK and investigate its angular and radial behavior. In this study, ADK is calculated in a homogeneous water phantom in the polar coordinates by using the Monte Carlo Geant4 toolkit for monoenergetic photons with energies in the range 0.3MeV-5MeV. To study accurately, ADK is divided into several groups in order of produced charged particle set in motion at each photon interaction. Our result shows ADK rapidly decreases as the polar angle, with respect to the incident photon direction, is increased. As the radial distance from the interaction point increases, ADK is raised and then strongly decreased. ADK is symmetrically distributed around the point of interaction for low incident photon energy while forward distributed for high incident energy photons.","PeriodicalId":38961,"journal":{"name":"Iranian Journal of Physics Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/ijpr.23.1.81563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, convolution/superposition(C/S) is used to calculate absorbed dose distribution by using the absorbed dose kernel(ADK). ADK describes the absorbed dose distribution per number of interaction at a small volume around the point of photon interaction. The purpose of this study is to calculate ADK and investigate its angular and radial behavior. In this study, ADK is calculated in a homogeneous water phantom in the polar coordinates by using the Monte Carlo Geant4 toolkit for monoenergetic photons with energies in the range 0.3MeV-5MeV. To study accurately, ADK is divided into several groups in order of produced charged particle set in motion at each photon interaction. Our result shows ADK rapidly decreases as the polar angle, with respect to the incident photon direction, is increased. As the radial distance from the interaction point increases, ADK is raised and then strongly decreased. ADK is symmetrically distributed around the point of interaction for low incident photon energy while forward distributed for high incident energy photons.
目前,利用吸收剂量核(ADK),采用卷积/叠加(C/S)法计算吸收剂量分布。ADK描述了在光子相互作用点周围的小体积内每次相互作用的吸收剂量分布。本研究的目的是计算ADK并研究其角和径向行为。在本研究中,利用Monte Carlo Geant4工具对能量在0.3MeV-5MeV范围内的单能光子在极坐标系下的均匀水影中计算了ADK。为了准确地研究,我们按照产生的带电粒子在每次光子相互作用中运动的顺序将ADK分为几组。结果表明,相对于入射光子方向的极角增大,ADK迅速减小。随着距相互作用点径向距离的增加,ADK先升高后急剧降低。对于低入射光子能量,ADK沿相互作用点对称分布;对于高入射光子,ADK沿相互作用点正向分布。