The effects of random reset on the dynamics of a non-Markovian random walk

Q4 Physics and Astronomy
{"title":"The effects of random reset on the dynamics of a non-Markovian random walk","authors":"","doi":"10.47176/ijpr.23.1.21612","DOIUrl":null,"url":null,"abstract":"Resetting in stochastic systems is defined in different ways. In this research, a 1D non-Markovian random walk is considered. In this process, the reset changes the dynamics in a way where the random walker, after losing its memory, goes back to a fixed point in space and starts again. In this study we investigate time evolution and also the long-time limit of displacement moments in the presence of resetting. Our calculations in the long-time limit show that the probability distribution function for displacement reaches a steady-state. On the other hand, this distribution never gets to a Gaussian form for any values of the resetting rate. We will show that, in contrast to the case where the process does not undergo resetting, the moments accumulate to finite values. This is confirmed by doing Monte Carlo simulations.","PeriodicalId":38961,"journal":{"name":"Iranian Journal of Physics Research","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/ijpr.23.1.21612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Resetting in stochastic systems is defined in different ways. In this research, a 1D non-Markovian random walk is considered. In this process, the reset changes the dynamics in a way where the random walker, after losing its memory, goes back to a fixed point in space and starts again. In this study we investigate time evolution and also the long-time limit of displacement moments in the presence of resetting. Our calculations in the long-time limit show that the probability distribution function for displacement reaches a steady-state. On the other hand, this distribution never gets to a Gaussian form for any values of the resetting rate. We will show that, in contrast to the case where the process does not undergo resetting, the moments accumulate to finite values. This is confirmed by doing Monte Carlo simulations.
随机重置对非马尔可夫随机漫步动力学的影响
随机系统中的重置有不同的定义。本研究考虑一维非马尔可夫随机漫步。在这个过程中,重置会改变动态,使随机漫步者在失去记忆后回到空间中的固定点并重新开始。在这项研究中,我们研究了时间的演变和位移矩的长期限制在重置的存在。在长时间极限下的计算表明,位移的概率分布函数达到稳态。另一方面,对于重置率的任何值,这个分布都不会达到高斯形式。我们将证明,与过程不经历重置的情况相反,力矩累积到有限值。通过蒙特卡罗模拟证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian Journal of Physics Research
Iranian Journal of Physics Research Physics and Astronomy-Physics and Astronomy (all)
CiteScore
0.20
自引率
0.00%
发文量
0
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信