{"title":"Improving corrosion resistance of aluminum by zirconium carbide thin films","authors":"","doi":"10.47176/ijpr.23.1.91579","DOIUrl":null,"url":null,"abstract":"In this paper, zirconium carbide (ZrC) thin films were deposited on glass and aluminum substrates using DC magnetron sputtering. It was found that different ratios of acetylene gas (C2H2, as a reactive gas) in the gas mixture of acetylene and argon (Ar, as a sputtering gas) affect the microstructural properties, corrosion behavior, and protection efficiency of ZrC thin films. X-ray diffraction (XRD) was used to characterize the microstructural properties of thin films. The corrosion behavior of thin films in a 3.5% NaCl solution was evaluated by potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS). FESEM was also employed to examine thin films' surface morphology and thickness.","PeriodicalId":38961,"journal":{"name":"Iranian Journal of Physics Research","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/ijpr.23.1.91579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, zirconium carbide (ZrC) thin films were deposited on glass and aluminum substrates using DC magnetron sputtering. It was found that different ratios of acetylene gas (C2H2, as a reactive gas) in the gas mixture of acetylene and argon (Ar, as a sputtering gas) affect the microstructural properties, corrosion behavior, and protection efficiency of ZrC thin films. X-ray diffraction (XRD) was used to characterize the microstructural properties of thin films. The corrosion behavior of thin films in a 3.5% NaCl solution was evaluated by potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS). FESEM was also employed to examine thin films' surface morphology and thickness.