{"title":"Miniaturized near-field-focused antenna array","authors":"Yinuo Li, Juan Chen, Jianxing Li","doi":"10.1080/09205071.2023.2259052","DOIUrl":null,"url":null,"abstract":"AbstractThis paper presents a microstrip planar antenna array designed for near-field focusing operating at 10 GHz. It is a challenge to reach the phase and amplitude distribution of near-field-focused antenna arrays with small focal spots. The antenna elements of this array are arranged radially on the aperture of only 5.6λ0 × 5.6λ0, which reduces the focal spot diameter. We designed an unequal-amplitude unequal-phase power divider to reach phase distribution and binomial taper distribution. The proposed array suppresses the sidelobes on the focal plane. It increases the electric field intensity by 11.46 dB compared with the horn with the same aperture size and increases 9.42 dB compared with the equal-phase array. The focus spot diameter is only 0.33λ0. The simulated and measured results are in good agreement, which verifies the high performance of the array. This miniaturized high-focus array has a good prospect in near-field applications like wireless energy transmission and industrial detection.KEYWORDS: Microstrip arrayplanar arraynear-field-focusedminiaturization Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundations of China [grant numbers 61971340 and 62122061]; the National Key Research and Development Program of China [grant number 2020YFA0709800]; and the Technology Program of Shenzhen [grant number JCYJ20180508152233431].","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"100 3 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2259052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThis paper presents a microstrip planar antenna array designed for near-field focusing operating at 10 GHz. It is a challenge to reach the phase and amplitude distribution of near-field-focused antenna arrays with small focal spots. The antenna elements of this array are arranged radially on the aperture of only 5.6λ0 × 5.6λ0, which reduces the focal spot diameter. We designed an unequal-amplitude unequal-phase power divider to reach phase distribution and binomial taper distribution. The proposed array suppresses the sidelobes on the focal plane. It increases the electric field intensity by 11.46 dB compared with the horn with the same aperture size and increases 9.42 dB compared with the equal-phase array. The focus spot diameter is only 0.33λ0. The simulated and measured results are in good agreement, which verifies the high performance of the array. This miniaturized high-focus array has a good prospect in near-field applications like wireless energy transmission and industrial detection.KEYWORDS: Microstrip arrayplanar arraynear-field-focusedminiaturization Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundations of China [grant numbers 61971340 and 62122061]; the National Key Research and Development Program of China [grant number 2020YFA0709800]; and the Technology Program of Shenzhen [grant number JCYJ20180508152233431].
期刊介绍:
Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results.
The scope of this Journal remains broad and includes the following topics:
wave propagation theory
propagation in random media
waves in composites and amorphous materials
optical and millimeter wave techniques
fiber/waveguide optics
optical sensing
sub-micron structures
nano-optics and sub-wavelength effects
photonics and plasmonics
atmospherics and ionospheric effects on wave propagation
geophysical subsurface probing
remote sensing
inverse scattering
antenna theory and applications
fields and network theory
transients
radar measurements and applications
active experiments using space vehicles
electromagnetic compatibility and interferometry
medical applications and biological effects
ferrite devices
high power devices and systems
numerical methods
The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.