A pathwise regularization by noise phenomenon for the evolutionary p-Laplace equation

IF 1.1 3区 数学 Q1 MATHEMATICS
Florian Bechtold, Jörn Wichmann
{"title":"A pathwise regularization by noise phenomenon for the evolutionary p-Laplace equation","authors":"Florian Bechtold, Jörn Wichmann","doi":"10.1007/s00028-023-00926-7","DOIUrl":null,"url":null,"abstract":"Abstract We study an evolutionary p -Laplace problem whose potential is subject to a translation in time. Provided the trajectory along which the potential is translated admits a sufficiently regular local time, we establish existence of solutions to the problem for singular potentials for which a priori bounds in classical approaches break down, thereby establishing a pathwise regularization by noise phenomena for this nonlinear problem.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":" 11","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00028-023-00926-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We study an evolutionary p -Laplace problem whose potential is subject to a translation in time. Provided the trajectory along which the potential is translated admits a sufficiently regular local time, we establish existence of solutions to the problem for singular potentials for which a priori bounds in classical approaches break down, thereby establishing a pathwise regularization by noise phenomena for this nonlinear problem.
演化p-拉普拉斯方程的噪声现象路径正则化
摘要研究了一个势随时间变化而变化的进化p -拉普拉斯问题。假设势能转换的轨迹允许足够规则的局部时间,我们建立了经典方法中先验边界被打破的奇异势能问题的解的存在性,从而建立了该非线性问题的噪声现象路径正则化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信