{"title":"A census of small Schurian association schemes","authors":"Jesse Lansdown","doi":"10.1142/s0218196723500674","DOIUrl":null,"url":null,"abstract":"Using the classification of transitive groups of degree $n$, for $2 \\leqslant n \\leqslant 48$, we classify the Schurian association schemes of order $n$, and as a consequence, the transitive groups of degree $n$ that are $2$-closed. In addition, we compute the character table of each association scheme and provide a census of important properties. Finally, we compute the $2$-closure of each transitive group of degree $n$, for $2 \\leqslant n \\leqslant 48$. The results of this classification are made available as a supplementary database.","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500674","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the classification of transitive groups of degree $n$, for $2 \leqslant n \leqslant 48$, we classify the Schurian association schemes of order $n$, and as a consequence, the transitive groups of degree $n$ that are $2$-closed. In addition, we compute the character table of each association scheme and provide a census of important properties. Finally, we compute the $2$-closure of each transitive group of degree $n$, for $2 \leqslant n \leqslant 48$. The results of this classification are made available as a supplementary database.
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.