Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Daniel Štefankovič
{"title":"Fast sampling via spectral independence beyond bounded-degree graphs","authors":"Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Daniel Štefankovič","doi":"10.1145/3631354","DOIUrl":null,"url":null,"abstract":"Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O ( n log n ) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L p -norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS’13). The non-linearity of L p -norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L p -analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G ( n , d / n ), where the previously known algorithms run in time n O (log d ) or applied only to large d . We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d , throughout the uniqueness regime.","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":" 83","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631354","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O ( n log n ) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L p -norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS’13). The non-linearity of L p -norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L p -analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G ( n , d / n ), where the previously known algorithms run in time n O (log d ) or applied only to large d . We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d , throughout the uniqueness regime.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing