ℤ-Gradings on the Grassmann Algebra Over Infinite Fields: Graded Identities and Central Polynomials

IF 0.5 2区 数学 Q3 MATHEMATICS
Claudemir Fideles, Alan Guimaraes
{"title":"ℤ-Gradings on the Grassmann Algebra Over Infinite Fields: Graded Identities and Central Polynomials","authors":"Claudemir Fideles, Alan Guimaraes","doi":"10.1142/s0218196723500650","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the infinite-dimensional Grassmann algebra over an infinite field [Formula: see text] of characteristic different from 2. The main purpose of this paper is to describe the [Formula: see text]-ideal of the graded polynomial identities and the [Formula: see text]-space of the central polynomials of [Formula: see text] equipped with its [Formula: see text] and [Formula: see text]-induced [Formula: see text]-gradings. Therefore, we generalize the results of [A. Brandão, C. Fidelis and A. Guimarães, [Formula: see text]-gradings of full support on the Grassmann algebra, J. Algebra 601 (2022) 332–353; C. Fidelis, A. Guimarães and P. Koshlukov, A note on [Formula: see text]-gradings on the Grassmann algebra and elementary number theory, Linear Multilinear Algebra 71(7) (2023) 1244–1264] in the PI theory context.","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500650","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be the infinite-dimensional Grassmann algebra over an infinite field [Formula: see text] of characteristic different from 2. The main purpose of this paper is to describe the [Formula: see text]-ideal of the graded polynomial identities and the [Formula: see text]-space of the central polynomials of [Formula: see text] equipped with its [Formula: see text] and [Formula: see text]-induced [Formula: see text]-gradings. Therefore, we generalize the results of [A. Brandão, C. Fidelis and A. Guimarães, [Formula: see text]-gradings of full support on the Grassmann algebra, J. Algebra 601 (2022) 332–353; C. Fidelis, A. Guimarães and P. Koshlukov, A note on [Formula: see text]-gradings on the Grassmann algebra and elementary number theory, Linear Multilinear Algebra 71(7) (2023) 1244–1264] in the PI theory context.
无穷域上Grassmann代数上的n -分级:分级恒等式和中心多项式
设[公式:见文]为特征不等于2的无限域上的无限维Grassmann代数[公式:见文]。本文的主要目的是描述[公式:见文]的分级多项式恒等式的[理想]和[公式:见文]的中心多项式的[公式:见文]空间及其[公式:见文]和[公式:见文]诱导的[公式:见文]分级。因此,我们推广了[A]的结果。brand, C. Fidelis和A. guimar,[公式:见文本]-格拉斯曼代数的完全支持度评分,数学学报,31 (2022):332-353;C. Fidelis, A. guimar es和P. Koshlukov,关于[公式:见文本]的注解-关于Grassmann代数和初等数论的评分,线性多线性代数,71(7)(2023)1244-1264]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信