Using Graph Neural Networks for Social Recommendations

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-11-10 DOI:10.3390/a16110515
Dharahas Tallapally, John Wang, Katerina Potika, Magdalini Eirinaki
{"title":"Using Graph Neural Networks for Social Recommendations","authors":"Dharahas Tallapally, John Wang, Katerina Potika, Magdalini Eirinaki","doi":"10.3390/a16110515","DOIUrl":null,"url":null,"abstract":"Recommender systems have revolutionized the way users discover and engage with content. Moving beyond the collaborative filtering approach, most modern recommender systems leverage additional sources of information, such as context and social network data. Such data can be modeled using graphs, and the recent advances in Graph Neural Networks have led to the prominence of a new family of graph-based recommender system algorithms. In this work, we propose the RelationalNet algorithm, which not only models user–item, and user–user relationships but also item–item relationships with graphs and uses them as input to the recommendation process. The rationale for utilizing item–item interactions is to enrich the item embeddings by leveraging the similarities between items. By using Graph Neural Networks (GNNs), RelationalNet incorporates social influence and similar item influence into the recommendation process and captures more accurate user interests, especially when traditional methods fall short due to data sparsity. Such models improve the accuracy and effectiveness of recommendation systems by leveraging social connections and item interactions. Results demonstrate that RelationalNet outperforms current state-of-the-art social recommendation algorithms.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":" 2","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender systems have revolutionized the way users discover and engage with content. Moving beyond the collaborative filtering approach, most modern recommender systems leverage additional sources of information, such as context and social network data. Such data can be modeled using graphs, and the recent advances in Graph Neural Networks have led to the prominence of a new family of graph-based recommender system algorithms. In this work, we propose the RelationalNet algorithm, which not only models user–item, and user–user relationships but also item–item relationships with graphs and uses them as input to the recommendation process. The rationale for utilizing item–item interactions is to enrich the item embeddings by leveraging the similarities between items. By using Graph Neural Networks (GNNs), RelationalNet incorporates social influence and similar item influence into the recommendation process and captures more accurate user interests, especially when traditional methods fall short due to data sparsity. Such models improve the accuracy and effectiveness of recommendation systems by leveraging social connections and item interactions. Results demonstrate that RelationalNet outperforms current state-of-the-art social recommendation algorithms.
使用图神经网络进行社交推荐
推荐系统已经彻底改变了用户发现和参与内容的方式。除了协作过滤方法之外,大多数现代推荐系统还利用其他信息源,例如上下文和社交网络数据。这些数据可以使用图来建模,图神经网络的最新进展导致了一系列新的基于图的推荐系统算法的突出。在这项工作中,我们提出了RelationalNet算法,该算法不仅对用户-物品、用户-用户关系以及物品-物品关系进行建模,并将其作为推荐过程的输入。利用项目-项目交互的基本原理是通过利用项目之间的相似性来丰富项目嵌入。通过使用图神经网络(gnn), RelationalNet将社会影响和类似项目影响纳入推荐过程,并捕获更准确的用户兴趣,特别是当传统方法由于数据稀疏而无法实现时。这些模型通过利用社会联系和项目交互来提高推荐系统的准确性和有效性。结果表明,RelationalNet优于当前最先进的社交推荐算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信